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Abstract

Unlike typical academic scheduling problems, we will hold the time
schedule constant and only optimize the reallocation of the rooms. We
provide a background of research already published, the basic
three-dimensional integer linear problem, the problem with reduced
dimensions and a reformulation into a linear transportation program.
We specifically look at the case study of Simon Fraser University Surrey.
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1 Introduction

Linear Integer Programming models have been studied over various

disciplines due to its wide variety of applications. Many scheduling

problems can be formulated as integer programs and is one of the major

topics of research in applied optimization. In particular, scheduling

problems in an academic setting have received extensive attention from

researchers and for good reason. Finding solutions that allow

universities to improve allocation of resources could potentially increase

student enrollment or serve existing students more efficiently is of great

importance. However, due to the difficulty of scheduling problems,

many schedules are merely feasible solutions, and may not be the best

use of an academic institution’s resources. Many research papers focus

on incorporating both the time table along with implementing a feasible

class room schedule. For example [4, 10] discuss many of the constraints

that are relevant in class room scheduling problems. Their model

minimizes the cost associated with having a class being assigned to a

particular room while guaranteeing each class having a room, and

ensuring each room is never double booked [4, 10]. These are the main

constraints that any given scheduling problem must take into account.

The article also modifies the objective function to force small classes to

use small classrooms [4, 10]. The main difficulty with solving the time

scheduling with the room schedule is the computational time [9]. With

the time schedule being implemented with room schedule, the problem
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is not able to be treated with each day being represented as its own

independent problem [2]. For a typical academic institution, this

problem can be very complex, and difficult to solve [5]. For further

research on university scheduling papers, we refer to [1, 3, 7]. Unlike the

standard course scheduling problems studied in literature, we assume

that a course schedule is already given and we want to make a

reallocation of rooms while keeping the time schedule unaltered and

minimizing a prescribed objective function. Section 2 describes the

main ideas behind the room reallocation problem. Section 3 then

describes different representations of the model which is then followed

by the SFU Surrey’s Case Study. Section 5 reformulates the integer

program into a transportation problem with out the integer constraint

with a proof that the minimum of the objective function remains

preserved. Finally, section 6 will suggest future areas of possible

research topics.

2 Problem Description

As an initial model, we will only look at reallocating classroom

assignments and the resulting effects on the academic institution’s

resources. Minimizing the slack between room sizes and course

enrollment is of particular interest to an academic institution because

more space will be available to accompany more students and/or more

courses. Slack represents the remaining space between enrollment and
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room capacity. Renting rooms to outside organizations provides the

institution with revenue, consequently maximizing the institution’s

renting ability is also of interest. Minimizing the rental cost of used

rooms for courses will allow for an increase in potential revenue from

renting outside the institution. We will also look at grouping faculty

courses by floor. For our case study, scheduling data is taken from

Simon Fraser University (SFU) Surrey. We aim to minimize renting

costs, slack between room size and course enrollment, and faculty

grouping by formulating the problem as an integer linear program. The

problem is solved for one week, with each day being divided into fifteen

time slots representing the possible times the course can be offered. The

time slots that a given course will be offered is fixed, thus results in

strictly a classroom reallocation problem. We will use binary variables

to indicate matching between rooms, courses and time slots. There will

be constraints to ensure the capacity of the room is sufficient for the

paired course. There will also be constraints ensuring only one course is

paired with a room for each time slot. The final requirement is for each

course to have a viable matching room.

3 Integer Programming Model

For simplicity, we first consider a three index model where classrooms are

represented by i, time slots by j and course number by k. The decision
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variable Xijk is defined as:

Xijk =

 1 if course k is assigned to room i at time slot j

0 otherwise

(1)

Let the following given data be defined as follows:

αk denote number of hours course k is offered per week.

ek denote the enrollment size of course k.

Ri denote the room capacity of room i.

Ci denote the renting cost of room i for one time slot.

Fi denote the floor of room i.

Fk denote the desired floor of course k.

N denote the total number of courses.

M denote the total number of rooms.

λ1, λ2, λ3 be non-negative weights.

3.1 General Classroom Assignment Problem

This gives the following integer programming formulation for the class

scheduling problem.

Minimize:

M∑
i=1

75∑
j=1

N∑
k=1

(λ1Ci + λ2 (Ri − ek) + λ3 |Fi − Fk|)Xijk (2)

Subject to:
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M∑
i=1

75∑
j=1

Xijk = αk,∀k (3)

ekXijk ≤ Ri,∀i, j, k (4)

N∑
k=1

Xijk ≤ 1,∀i, j (5)

Xijk ∈ {0, 1} (6)

The constraints are explained as follows:

1. Our objective function balances three terms. The first seeks to

minimize the slack between room capacity and enrollment size.

The second minimizes room costs which consequently maximizes

potential renting profit from outside organizations. The third

term is a soft constraint to group faculties on desired floors.

2. The number of hours a course is offered must be conserved for any

feasible matching.

3. The course enrollment must be less than the room capacity for every

used room.

4. No feasible matching can have more than one course in one room

at one time.

5. Xijk is a boolean variable.
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Due to the inherit difficulty of scheduling problems, we keep the time

slots fixed. This gives the following additional constraint:

Let Jk be the set of used time slots for course k.

M∑
i=1

∑
j 6∈Jk

Xijk = 0,∀k (7)

This constraint ensures that unused time slots remain unused.

Furthermore, courses that are more than one timeslot in length should

remain in the same room. This gives:

Xijk = Xij+1k = · · · = Xij+nk if Jk = [j, j + 1, . . . , j + n] (8)

3.2 Reducing Dimension

As a result of fixing time slots, we are able to change the

three-dimensional problem into one with only two dimensions. Since a

course can be assigned to only one room per day, we are able to

reformulate the problem into 5 independent problems, treating each day

independently. The result allows the following decomposition:

Xijk = TjkYik (9)

Tjk =

 1 if course k is offered during time slot j

0 otherwise

(10)
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Yik =

 1 if course k is assigned to room i

0 otherwise

(11)

Since Tjk is fixed, the decomposition translates to the following

reformulation:

Minimize:

M∑
i=1

15∑
j=1

N∑
k=1

(λ1Ci + λ2 (Ri − ek) + λ3 |Fi − Fk|)TjkYik (12)

Subject to:

M∑
i=1

Yik = 1,∀k (13)

ekYik ≤ Ri,∀i, k (14)

N∑
k=1

YikTjk ≤ 1,∀i, j (15)

Yik ∈ {0, 1} (16)

The constraints are explained as follows and enforce the same properties

as the general problem:

12. Our objective function balances the same three terms as the original

model.

13. The course can only be in one room per day and forces courses over

an hour long to remain in one room.

14. The course enrollment must be less than the room capacity for every
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used room.

15. No feasible matching can have more than one course in one room

at one time.

16. Yik is a boolean variable.

With the implementation of the fixed values Tjk, the resulting model has

far fewer variables and is much more practical to implement solvers.

4 Case Study

We are given a feasible course schedule from SFU Surrey campus. Our

task is to improve on the schedule under certain assumptions and

constraints. There is freedom in choosing the weights depending on

which terms are deemed more valuable. The model will have the basic

scheduling constraints as well as additional constraints tailored to the

classroom reallocation problem. We will assume that the courses of

which require computer labs will be fixed as all the computer labs in

SFU Surrey have the same capacity, the same cost for renting and are

located on the same floor. Therefore, there will be no possible

improvement be swapping between the labs. The data and model will

be implemented in Microsoft Excel. The initial schedule is mined by an

algorithm written in Visual Basic to format the scheduling data to be

consistent with our model. Open Solver, a plugin for Excel that allows

for larger problem sizes, will use the simplex algorithm and as well as

60



branch and bound technique for optimizing the schedule [6]. Currently

the time and room schedule at SFU Surrey is created by hand by a full

time employee. Their goal is simply to create a feasible class room

location schedule. A one week snap shot of the current schedule has

been provided by SFU Surrey and was added into excel to create an

electronic version. Not including the computer labs, there are 31

classrooms, and including tutorials, there are 524 courses. There are

only 3 floors which contain classrooms. Typically, science faculty reside

on the 2 and 3 floor, and art and social sciences are found on the 5

floor. The majority of rooms hold between 24-30 students. There are

additional rooms that have a capacity of 100, 150 and 200 students. As

a rough estimate, for each day there are approximately 100 courses, 31

rooms resulting in roughly 3100 variables. This is coupled with

approximately 3800 constraints.

4.1 Choosing Weights in the Objective Function

The objective function has three undetermined weights: λ = [λ1, λ2, λ3].

The choice of these weights determine the importance of each term in the

objective function. Choosing weights admits freedom in how SFU Surrey

would prefer to allocate their resources. Since the runtime was under five

seconds for each day, we were able to run the model with various sets of

weights. The tables display the results in the following manor. It looks

at each day, and the resulting objective function of the given data before
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and after optimization. The final three columns show non-scaled values

of the three terms of the objective function after optimization.

Table 1: λ = [1,0,0]
Day Before After λ1 Term λ2 Term λ3 Term
Monday 31446 20671 20671 5531 128
Tuesday 29052 19502 19502 4900 81
Wednesday 34167 21767 21767 5777 112
Thursday 26102 17177 17177 4301 61
Friday 31675 18325 18325 4674 93

Table 2: λ = [0,1,0]
Day Before After λ1 Term λ2 Term λ3 Term
Monday 7601 5464 21171 5464 115
Tuesday 6890 4869 19752 4869 81
Wednesday 8164 5691 21867 5691 115
Thursday 6312 4256 17477 4256 64
Friday 7490 4604 18475 4604 91

Table 3: λ = [0,0,1]
Day Before After λ1 Term λ2 Term λ3 Term
Monday 148 43 30921 7282 43
Tuesday 122 25 27252 6510 25
Wednesday 140 49 29517 7112 49
Thursday 128 31 20677 5035 31
Friday 140 38 28075 6559 38

Table 4: λ = [1,1,1]
Day Before After λ1 Term λ2 Term λ3 Term
Monday 39195 26261 20671 5474 116
Tuesday 36064 24447 19502 4876 69
Wednesday 42471 27568 21767 5701 100
Thursday 32542 21500 17177 4266 57
Friday 39305 23020 18325 4609 86
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Table 5: λ = [0.01,1,5]
Day Before After λ1 Term λ2 Term λ3 Term
Monday 8655.5 6110.5 22246 5533 71
Tuesday 7790.5 5369.3 19927 4900 54
Wednesday 9205.7 6364.7 22667 5733 81
Thursday 7213 4705.3 17427 4276 51
Friday 8506.8 5161 1900 4626 69

Tables 1 - 5 show that, regardless of the weights, there is great

possibility for improvement. We first looked at only one term of the

objective function in order to see which terms were closely related.

Typically larger classrooms are also more costly and Tables 1 and 2

show the terms scaled by λ1 and λ2 are related as expected. If we only

optimize clustering faculty, Table 3 shows the cost and slack in rooms

become large. Having equal weights results in first optimizing cost, then

slack, and lastly faculty groupings which is displayed in Table 4. We

modified the weights as having a course on the undesired floor should

not be equal to having one student slack or one dollar change in room

cost. We chose to have the floors weighted heavier by a factor of 5, and

reduced the cost term by a factor of 100. Reducing cost is less

important to a University as renting potential is insignificant compared

to potential student enrollment. When a class is on a undesired floor, it

affects more than one student, and hence requires a heavier weight.

Comparing Tables 4 and 5 shows that there is minor relative difference

between the λ1 and λ2 terms yet a more significant change in the λ3

term.
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4.2 Course Movement

Once we decided on the weights for λ, we analyzed the movement of the

courses. The movement of courses with λ = [0.01,1,5] was widespread.

Out of the 524 courses, only 37 courses remained in the room allocated

by the original schedule. This indicates the original schedule was a poor

allocation of school resources. There were two main types of courses

that remained stationary. Firstly, were the large courses, which had

enrollment of over 100 students. These remained stationary since there

are only a few large classrooms available during peak time slots. With

the restriction of the number of classrooms available, there are no other

feasible locations to be reallocated to. The other group of courses that

remained the same were the courses with small enrollment, typically 12

students or fewer. These courses were also already located on the

desired faculty grouping. Since these courses are already in the rooms

with the smallest capacity, and on the desired floor, moving these

courses would not improve the objective function. The majority of the

courses that were reallocated where courses with enrollment between

20-50 students. This is due to the fact that the majority of the rooms at

SFU Surrey have a capacity between 24 and 60 students. The

movements were either between rooms of the same capacity but

different floors, or the original schedule had placed the course in too

large of a room when other smaller rooms were unused. In both cases,

classroom reallocation has greatly increased SFU Surrey’s allocation of
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resources.

5 Relaxation to LP

One of the difficulties of dealing with integer programs is the inherit

computational complexity, NP-Hard [8]. Due to the special structure of

our integer program, it can be inflated and reformulated in such a way

that the integer constraint can be relaxed. The first step is to inflate the

number of variables so that individual rooms have states according to

time slots. Let i be an inflated index from before to denote a room and

time slot.

Let Si denote a supply node with supply 1.

Let Dj denote a demand node. The demand of each node is 1.

Let Aik be the same constant as the objective function in the original

model.

The resulting model is: Minimize

15M∑
i=1

N∑
k=1

AikXik (17)

Subject to:

15M∑
i=1

Xik = Dk,∀k (18)

N∑
k=1

Xik ≤ Si,∀i (19)
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Xik ≥ 0,∀i, k (20)

The classroom reallocation problem is now an unbalanced transportation

problem. Balancing the problem requires creating a fictitious demand

node for the excess supply at no extra cost. This gives:

Dk+1 =

15M∑
i=1

SI −
N∑

k=1

Dk (21)

Cik+1 = 0,∀i (22)

Since classroom times are fixed, many possible matchings between supply

and demand nodes must be eliminated. This is overcome by assigning

the cost of using these edges to be higher than our objective function

evaluated at the given feasible solution. This ensures that an optimal

solution will not use these edges and preserves the minimizer between

formulations.

Proof. Let X0 be given initial feasible solution.

Let f(X) be the objective function of transportation formulation.

Let g(X) be the objective function of the reduced dimension

formulation.

Let S0 be the feasible matchings from reduced dimension formulation.

Let S1 be the feasible matchings from transportation formulation.

The transportation formulation contraints ensure that each course is

offered and there is no overlap between rooms. Since the constraint set
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is a proper subset of the reduced dimension formulation it follows:

S0 ⊂ S1 and S1/S0 6= ∅.

∀X ∈ S1/S0 let the associated constant of each violated matching,

course offered at wrong time or in too small of a room, in the objective

function g(X):

Aik = g(X0) + ε where ε > 0

⇒ ∀x ∈ S1/S0, g(X) > g(X0)

In the reduced dimension formulation the objective function is given by:

f(Y ) =

M∑
i=1

15∑
j=1

N∑
k=1

(λ1 (Ri − ek) + λ2Ci + λ3 |Fi − Fk|)TjkYik (23)

Since for x ∈ S0 credit hours must be preserved,

15∑
j=1

Tjk = αk (24)

⇒ Summing over j gives

f(Y ) =

M∑
i=1

N∑
k=1

αk (λ1 (Ri − ek) + λ2Ci + λ3 |Fi − Fk|)Yik (25)

Coefficients in g(X) are the same for every room. For X ∈ S0, coefficients

are repeated αk times for every course . Deflating the index i in g(X)

gives:

∀X ∈ S0, g(X) =

M∑
i=1

N∑
k=1

αk (λ1 (Ri − ek) + λ2Ci + λ3 |Fi − Fk|)Xik

67



(26)

Since S1 is nonempty there exists an optimal solution X∗

Since X∗ optimal and X0 ∈ S1, g(X∗) ≤ g(X0) < g(X0) + ε

⇒ X∗ 6∈ S1/S0 ⇒ x∗ ∈ S0

Since f(X) = g(X) for x ∈ S0 and X∗ ∈ S0 ⇒ X∗ is a minimizer of

f(X)

⇒ Minimizer is preserved between formulations

The basic idea of the proof is to take advantage of the feasibility of the

problem. In the optimal case, the objective function will be less than or

equal to the given feasible solution. By inflating the value of the

objective function for undesired matchings, we are able to reduce the

number of constraints, specifically the integer constraint.

Although the formulation into a transportation problem gives 15 times

more variables, it’s main advantage is that all extreme points of the

feasible set are integer valued given that row and column sums are

integers, see [8] for a proof. This allows the relaxation of the integer

constraint for suitable choices of λ. Due to the small run-times for

solving the classroom reallocation problem with the integer constraint,

this transportation formulation was not explored further to the small

possible decrease in runtime. However, for larger problems the

transportation formulation may cut down the amount of runtime
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significantly due to the nice properties and algorithms available for

transportation problems.

6 Future Research

The existence of fast algorithms for the resulting transportation

problem motivates separating the full classroom assignment problem

into the time scheduling and classroom reallocation phases. Once a time

schedule is created, the classroom reallocation phase will move rooms to

improve use of resources. In theory the disjoint problem will not

provide the optimal solution, however the solution of the disjoint

problem is more practical due to the significant decrease in the number

of variables. The large slack in the case study combined with the large

number of reallocations motivates the assumption that feasibility should

be conserved in the disjoint problem. A potential addition to the model

is a change in objective coefficients to penalize movement of course

locations between separate days. Although run times with the integer

constraint were very low for the SFU Surrey Case Study, determining

the size when the transportation reformulation is more efficient is of

particular interest. More constraints can be added to the transportation

formulation by making the associated cost very high. Adding

constraints that involve course needs like technology or specific

information about a room can be incorporated with relative ease

making this formulation a very practical model.
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7 Conclusion

The case study has shown that SFU Surrey has been poorly allocating

their resources when it comes to class room scheduling. Much research

has been focused on the classroom scheduling problem that incorporates

both the time and room schedule as a whole. We looked at the second

phase of the two-phase scheduling problem, where the time schedule is

given. As a result of the SFU Surrey being a relatively small campus,

we were able to run the solver with various objective functions. This

allows for SFU Surrey to modify their resource allocation in a more

optimal manor. Furthermore, the movement between rooms was

widespread showing the freedom in the room allocation problem.

Additional constraints can also be added to create a more accurate

model. The small runtime, along with the flexibility of the model makes

this a practical tool for academic institutions. The entire set of results,

including initial solution and solver is available by email.
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