
The TA Assignment Problem with
Open Tutorials

Hans Aisake, Issac He, Mark Strange
Department of Mathematics, Simon Fraser University, Surrey

BC

Abstract

We consider the problem of scheduling teaching assistants (TAs) to an
open tutorial lab. Open tutorials provide an integrated framework of
offering tutorials for multiple courses. Hence, assignment of teaching
assistants raises several optimization challenges. We formulate the TA
assignment problem as a minimum-cost network flow model with addi-
tional restrictions to distribute the tutorial workload among several TAs.
Factors such as TA availability, course schedules, and expected student
turnout are taken into account. The model takes advantage of certain
jobs that do not require specific time scheduling. The output of the model
yields a solution that can reach the most students possible. Furthermore,
since these are generally small problems, solutions can be found in a
timely manner using a general purpose integer programming solver.

34



1 Introduction

Open Tutorials are a type of tutorial format where students and tutorials
are not assigned to each other. Instead, tutorials are held in an open room
where students can arrive at any time. The problem with this structure
is scheduling teaching assistants (TAs) in a way such that they can help
all students that arrive. With a large number of TAs, a TA can always
be present in the room. However, with a small number of TAs this is not
possible. Moreover, not all TAs will handle all the courses. Thus efficient
allocation of TAs to group of courses and to appropriate time slots is a
difficult problem. To the best of our knowledge, this problem has not
yet been studied in literature although, university course scheduling is
studied extensively in literature.

The purpose of this research project is to investigate if the Open Tu-
torial TA assignment problem (OTTA) can be modeled and solved with
an integer linear program. Üney-Yüksektepe and Karabulut [3] used a
mixed integer linear programming model to assign TAs to tutorials, but
their tutorials are not open tutorials. Daskalaki, Birbas, and Housos
[2] use a binary integer program to solve a university course timetable
problem. Al-Husain, Hasan, and Al-Qaheri [6] implement a multi-stage
integer goal program to solve a similar university course timetable prob-
lem. And Osman, Balola, Ali Yahya, and Ali Abdelrahman [1] use a
genetic algorithm for solving a university course timetable problem. Uni-
versity course scheduling is a well studied area with a large amount of
literature. These models however is not applicable to our problem.

2 The Problem

We seek to derive a schedule for TAs to work in the Open Tutorial room
(open lab). In addition, TAs have other tasks they need to perform, such
as: marking assignments, marking exams, and exam proctoring. Several
factors must be considered: student availability, TA availability, TA re-
quested workload, and open lab operating time.

The ultimate goal of any tutorial is to help students, and the Open
Tutorial is no different. With this in mind, student availability is a very
important factor. There are various ways to gather information on stu-
dent availability. For example, looking at each student’s course schedule
or conducting a survey, can yield student availability information. This
information can be used to construct a weight function which correlates

35



student demand with specific time slots. We assumed that an appropri-
ate weight function can be found, where large weights are ”good” times,
and ”small” weights are bad times. A further restriction on the weight
function is that is must be positive. In addition, it is preferable to be
integer-valued.

In the open lab, there are teaching assistants providing student help,
as well as professors providing office hours. With a limited number of
personnel, it is not preferable to have many people in the open lab at the
same time. However, if student demand is high enough, overlap between
schedules is allowed. We do not consider room size limitations: this is
justified since the problem only considers a small number of TAs.

3 Formulation of the Model

We formulate the OTTA problem as a minimum-cost network flow. Each
TA is represented by a source node, with supply equal to the number of
half-hours of requested workload in a semester. The different jobs that
must be assigned, (assignment and exam marking, exam proctoring, etc.),
are represented by sink nodes with demand equivalent to the number of
half-hours needed to complete the job. These sink nodes are classified
as fixed-time jobs, since their demand must be completely satisfied and
is invariant. Some TAs can be designated special, and assigned to only
do marking tasks; whereas other TAs receive no special designation, and
can be assigned to any task.

The arcs from each TA node to the fixed-time job nodes have cost 0
and capacity related to the number of TAs available to do that job, tak-
ing into account TAs with special designation. The capacity is bounded
this way in order to provide a fair distribution of fixed-time job work-
load. Assignment marking arcs are not given a capacity, since these are
handled by TAs in their own time.

The open lab is represented by a single sink node with infinite de-
mand, so it can take all left over supply from TAs. Each TA has a series
of arcs to the open lab node with unit capacity. Each arc represents a
specific half-hour time block available to work in the open lab. These
arcs are assigned corresponding values from the weight function, which
represent the availability of students in the open lab.

36



Below is shown a simplified version of the network, with one TA visi-
ble. Arc labels are (cost, capacity).

Figure 1: Simple graphic depiction of the network

3.1 Assumptions

• Every TA is equally competent at every job
We can assume this because TAs are generally graduate students,
and should be able to competently tutor first-year mathematics stu-
dents.

• Every TA has already taken into account travel time, etc.
in their given availability schedule
Solving for each TA’s individual travel time is needlessly compli-
cated and unnecessary. TAs can be informed to take travel time
into account in their availability schedules.

37



• The time needed to mark assignments, midterms, and fi-
nals is fixed
Even though it is possible that the time needed to mark midterm
and final examinations will overflow, this is assumed to be an ex-
ceptional occurrence.

• If midterm and final marking must be done in a specific
room, we assume the booking and staffing of these rooms
is handled externally
The department supervisor is assumed to be able to find and book
rooms for marking midterm and final exams, since adding room
availability schedules to the model is very complicated.

• All assignment marking is assumed to fit into a TA’s sched-
ule
TAs are generally required to mark assignments on their own time,
and we do not need to schedule the exact time that they will do
this work. We need only allot a sufficient number of hours worth of
pay to account for this job. This is in part because assignments are
easy and quick to mark, and TAs have all evenings and weekends
as possible work time.

• The number of assignments and midterms in a class does
not change over the semester
Professors are assumed not to add extra midterms and assignments
during the semester, since they will have a set course plan for the
term.

The following assumptions are implemented for the sake of simpli-
fication, and can be removed for an updated model

• All exam marking and proctoring is handled separately,
and we don’t worry about fitting these events into a sched-
ule
Accounting for room scheduling and professor availability in the
model adds a lot of complexity, and does not add much to improv-
ing the schedule solution. Midterms and exams are rare events, and
room booking can be done externally without much difficulty. In
the event that one knows the day and time midterms will be marked

38



beforehand, the model can account for this by giving these times 0
or negative weight.

• TAs will be present for all assigned open lab hours
We do not account for sudden sickness or other unscheduled reasons
for absence in the assigned TA schedules.

• Midterm marking for each course will be done by all TAs
and at least one professor
There should be assigned an equal number of midterm marking
hours to each TA in a workshop. Since personnel is limited, this
allows exams to be marked quickly.

3.2 Notation, Parameters, and Variables

t = index for time: counting in order all half-hour time slots to allo-
cate.

g = specific values of index t corresponding to the start of a day.

k = index for the days of the week. k = {0, 1, . . .K−1}, where K ≤ 7
is the number of days in a week where the open lab is open.

h0 = the number of half-hour time slots in one day.

i = index for each T.A. i = {0, 1, . . . , I}, where I is the total number
of TAs.

c = index for each course. c = {0, 1, . . . , C}, where C is the total
number of courses serviced by the Open Tutorial.

l = index for a type of fixed-time TA job (a job other than tutoring
in the open lab).

Si = the number of half-hour blocks that TA i can work in a semester,
based on their requested workload.

λc = the number of students in course c.

39



αc = the number of assignments course c will have in the semester.

βc = the number of midterms class c will have in the semester.

~m = (mA,mM ,mF ) a vector of alloted minutes for a TA to mark one
assignment, midterm, or final.

φ = the number of special TAs, only able to do marking tasks.

γ = the number of all other TAs, able to do all possible tasks.

dl = the number of half-hours needed to complete all instances of
fixed-time job l over the entire semester.

wt = the weight function, proportional to the number of potential
students that can be helped in the open lab at time t.

µli = the upper time bound for TA i to give to job l, to enforce a fair
distribution of work.

yit =

{
1 if TA i is available at time t

0 otherwise

zt =

{
1 if a professor has office hours at time t

0 otherwise

Variables:

f li = the number of half-hours that TA i is assigned to doing a fixed-
time job l.

xit =

{
1 if TA i is assigned to the open lab at time t

0 otherwise

Vig =

{
1 if TA i works day starting at g

0 otherwise

Rig =


1 if TA i is assigned to work all

occurrences of the day of the week g

0 otherwise

40



3.3 Constraints

1. All fixed-time jobs must be complete.∑
i

f li ≥ dl ∀l

2. Use as many available TA half-hours as possible.∑
l

f li +
∑
t

xit ≤ Si ∀i

3. There should be a TA or a professor in the open lab every day.

g+h0∑
t=g

(∑
i

xit + zt

)
≥ 1 ∀g

4. Each TA’s availability must be satisfied when assigning them to the
open lab.

xit ≤ yit ∀i, t

5. No TA should be in the open lab at the same time as another TA,
or when a professor is holding office hours there.∑

i

xit ≤ 1− zt ∀t

6. The number of open lab hours for each TA in a day, should be equal
for the same day in the following week.

g+h0∑
t=g

xit =

g+(K+1)h0∑
t=g+(K)h0

xit ∀i, g

7. If TA i is set to work on day starting at g, then they must work
between one and six half-hour segments over that day.

Vig ≤
g+h0∑
t=g

xit

41



g+h0∑
t=g

xit ≤ 6Vig ∀i, g

8. Ensure TA i works the same days in consecutive weeks.∑
g lies on day k

Vig = LRik ∀i, k

Where L is the number of weeks in a semester.

9. The variables xit are binary.

xit ∈ {0, 1} ∀i, t

10. The variables f li are integer.

f li ∈ {0, 1, 2, . . . } ∀i, l

4 Model

A summary of the network flow model in mathematical notation. The
objective is to maximize the number of potential students helped in the
open lab.

max
∑
i

∑
t

wtxit

Subject to:

∑
i

f li ≥ dl ∀l

∑
l

f li +
∑
t

xit ≤ Si ∀i

g+h0∑
t=g

(∑
i

xit + zt

)
≥ 1 ∀g

xit ≤ yit ∀i, t

42



∑
i

xit ≤ 1− zt ∀t

g+h0∑
t=g

xit =

g+(K+1)h0∑
t=g+(K)h0

xit ∀i, g

Vig ≤
g+h0∑
t=g

xit

g+h0∑
t=g

xit ≤ 6Vig ∀i, g

∑
g lies on day k

Vig = LRik ∀i, k

Where L is the number of weeks in a semester.

xit ∈ {0, 1} ∀i, t

f li ∈ {0, 1, 2, . . . } ∀i, l

5 Case Study

One of the motivations for this project was to develop a model to solve
the OTTA problem at Simon Fraser University’s Surrey campus. To test
the derived model, we obtained a set of sample data for the Spring 2012
semester at SFU Surrey. This study shows that a reasonable solution is
obtained using this real data.

The mathematics department at SFU Surrey subdivides the open lab
into three distinct workshops: Intro Math, Pure Calculus, and Applied
Calculus. Each workshop is dedicated to a specific and independent sub-
set of first- and second-year math courses. TAs for the open lab are pre-
assigned to one of the three workshops, and are not allowed to cross be-
tween the different workshops. Because of this, the entire model network
can be partitioned into three independent and structurally identical net-
works. These networks are then solved separately. In addition to open lab
tutoring, TAs at SFU Surrey are also required to do assignment, midterm,
and final exam marking, as well as midterm and final exam proctoring.
These fixed-time jobs are indexed by l ∈ {AM,MM,FM,MP,FP}, re-
spectively. We assume that all TAs in a given workshop will be present

43



for midterm and final exam proctoring for any courses covered in their
workshop. This is a pattern we observed in already existing schedules for
the open lab.

The open lab at SFU Surrey operates from 9:00AM to 4:30PM, Mon-
day through Friday, for all 16 weeks during a semester. This gives the
possible values of the time index, t = {0, 1, . . . , 1199}. The interval
[15n, 15(n+ 1)) for n = 0, 1, . . . , 79 is one day, while [75n, 75(n+ 1))
for n = 0, 1, . . . , 15 is one week. This also shows that g indicates the
start of a day whenever t mod 15 = 0.

C ≤ 4 is an upper bound on the total courses in one workshop. The
workload of each TA is provided in Basic Units (BUs), which is converted
to half-hour time blocks: Si = b(BUs of TA i)(41)(2)c. Alloted minutes
for a TA marking are ~m = (2, 6, 12), for assignment, midterm, and final,
respectively.

5.1 Input

We provide the data only for the Applied Calculus workshop, for simplic-
ity.

Table 1: Course Information
Course Name (c) Students (λc) Assignments (αc) Midterms (βc)

Math 155 97 10 2
Math 157 68 10 2
Math 232 83 10 2

Table 2: Anonymized TA Data
TA Name Designation Requested BUs Half-hours

SL Normal 5.3 434
BB Normal 3.8 311
FD Normal 3.02 247
T Normal 2.3 188
H Special 2 164
Y Special 1.3 106

Consequently, the number of half-hours needed to complete the fixed-
time job l is (taking into account special TAs):

44



dl =



2
30

∑
c αcλc = 166 l = AM

6
30

∑
c βcλc

γ+φ
1+γ+φ = 86 l = MM

12
30

∑
c λc

γ+φ
1+γ+φ = 86 l = FM

60
30

∑
c βcγ = 48 l = MP

180
30 Cγ = 72 l = FP

And upper time bounds for TA i to give to job l are given by:

µli =


dl
γ+φ = 15 l ∈ {MM,FM}
dl
γ = 12 l = MP
dl
γ = 18 l = FP

The model is implemented using Microsoft Excel, and the OpenSolver
plugin [7].

When running the model, we encountered a twofold issue: a TA sched-
ule would either have several time gaps in a day’s work, or several TAs
would alternate working in one contiguous segment of time (Note the
Tuesday, Thursday, and Friday timetables in Figure 2). Since every TA
is assumed to be equally competent, the only difference should be their
availability. These issues can then be manually adjusted with some dif-
ficulty after the solution is found. However, we sought an adjustment
to the model that would force these issues to resolve themselves during
processing. The solution we found was to introduce another constraint:
limit the number of TAs present in the open lab in a single day.

Setting the upper bound on number of TAs per day to either 4 or 3
did not affect the schedule issues significantly. The resulting schedules
still proved difficult to manually adjust after the solution was found.

When the upper bound is lowered to 2 TAs per day, an excess of
unassigned time occurs for some TAs in the solution:

The unassigned time for these three TAs is not necessarily an un-
wanted effect. This extra time can be treated as a sort of slack, and
manually reassigned for special events such as midterm and final extra
tutoring. The weekly schedules also show reduced gaps, and the limited
number of TAs in a day prevents excessive alternating TAs in a schedule.

45



Figure 2: Sample of a Poor Schedule
Time Monday Tuesday Wednesday Thursday Friday

9:00-9:30 BB FD SL SL SL
9:30-10:00 SL SL
10:00-10:30 T T BB
10:30-11:00 SL T BB T FD
11:00-11:30 BB SL BB T SL
11:30-12:00 SL SL BB
12:00-12:30 T SL BB
12:30-1:00 BB FD SL SL SL
1:00-1:30 BB SL SL T FD
1:30-2:00 BB SL SL T BB
2:00-2:30 FD BB FD BB
2:30-3:00 FD BB FD BB
3:00-3:30 SL BB FD SL
3:30-4:00 FD SL SL
4:00-4:30 T FD SL

Table 3: Unassigned Time for 2 TAs per Day
TA Name Unassigned Half-Hours

SL 24
BB 0
FD 8
T 36

What issues do remain are small enough that they can be manually ad-
justed.

When the upper bound is lowered to only one TA per day, a signifi-
cant excess of unassigned time occurs:

These excesses are so large that they defeat the point of solving the
problem using an integer program, since clearly the solution cannot be
close to optimal. In addition, due to the lack of assigned time, gaps in
TA schedules appear again.

We conclude from this case study that any increase beyond 2 TAs
per day will increase the occurrence of gaps, and allow more alternating
TA schedules in a day. In addition, the magnitude of this adverse effect
increases with more TAs added. We also determined that dropping the

46



Table 4: Unassigned Time for One TA per Day
TA Name Unassigned Half-Hours

SL 182
BB 155
FD 91
T 36

number of TAs per day to one is unacceptable, since it fails to assign
all available TA time to tasks. Shown below in Figure 3 is the output
schedule from limiting the number of TAs in one day to 2.

Figure 3: Output Schedule for 2 TAs per Day
Time Monday Tuesday Wednesday Thursday Friday

9:00-9:30 BB SL BB SL BB
9:30-10:00 SL FD T SL
10:00-10:30 BB BB T BB
10:30-11:00 BB FD T BB
11:00-11:30 SL SL FD T BB
11:30-12:00 FD SL BB
12:00-12:30 FD SL SL
12:30-1:00 SL FD FD SL
1:00-1:30 BB SL BB
1:30-2:00 SL SL BB T
2:00-2:30 SL FD BB SL
2:30-3:00 FD FD SL
3:00-3:30 SL FD T SL
3:30-4:00 FD SL BB
4:00-4:30 SL SL

6 Future Development

The model developed above gives a framework for solving the OTTA
problem, but many assumptions were made to reduce the overall com-
plexity of the model. Future versions of the model will replace these
assumptions with new model components which take into account their
effects. In addition, there are other subproblems which can be included
to expand the breadth of the solution.

47



Solutions produced by this model tend to produce TA schedules with
disjoint segments of time, as discovered in the case study. That is, for
a given TA on a single day there are several distinct and separated time
blocks scheduled. Unfortunately, these schedules are not convenient for
TAs or students, even though the schedule gives an optimal assignment
to student availability. To correct for this, either an additional set of
constraints or a reformulation of the model are necessary.

Fixed-time jobs, such as exam marking and proctoring, are assumed
to fit into TA schedules when assigned. However, this can possibly con-
flict with other assigned tasks or TA availability. The exam proctoring
assignment is a problem that can be addressed easily in an update to the
model: by adding constraints for each proctoring assignment associating
each one with a specific time slot.

The model as presented gives a full schedule for the whole term. This
does not account for unexpected events such as sickness. To adjust for
this in the model, a post-processing improvement heuristic can be used.
This sort of improvement heuristic has already been implemented in a
similar integer programming problem for airline schedule recovery [5].

With these additional constraints and modifications, the model may
become prohibitively complex. If this is the case, then there is precedent
for applying an improvement heuristic: Gunawan et al. [4] modeled a
timetabling problem as an integer program that was very complex. They
developed an improvement heuristic that solves their problem in a rea-
sonable time. Their heuristic splits the problem into two sub-problems
and solves them iteratively, sacrificing optimality in exchange for speed.

7 Conclusion

At the start of this project, we intended to investigate whether the OTTA
problem could be solved by a linear program. Though the model pre-
sented does not completely solve all the issues present in the problem
definition, it does provide a starting point for further development. The
OpenSolver-based spreadsheet we developed is able to find a solution that
is optimal for the conditions set up in the model.

Improvements to the solution would be in the form of more cohesive
schedules, not a more optimal solution. This can be achieved either

48



by altering the model, or performing some improvement heuristics. An
alternate improvement would be converting the model into a piece of
custom software with a better user interface, with no dependence on
Microsoft Excel.

8 Acknowledgments

We wish to thank Dr. Natalia Kouzniak for providing us the details of
the Open Tutorial problem at SFU’s Surrey campus. She also provided
for us anonymized TA and course data, that we were able to use for the
case study.
This project is the culmination of an SFU MATH 402 project course,
taught by Dr. Abraham Punnen. We would also like to thank Dr. Pun-
nen, for guiding us and providing criticism on our progress developing
the network flow model.

49



References

[1] Addin Osman, Adlan Balola, Anwar Ali Yahya, Yahya Ali Abdelrah-
man; A Survey of University Courses Timetable Scheduling Problem.
Journal of Computing 3(2011) 85-90

[2] S. Daskalaki, T. Birbas, E. Housos; An integer programming formu-
lation for a case study in university timetabling. European Journal
of Operations Research 153(2004) 117-135

[3] Fadime Üney-Yüksektepe, İlayda Karabulut; Mathematical Pro-
gramming Approach to Course-Teaching Assistant Assignment
Problem. Proceedings of the 41st International Conference on Com-
puters & Industrial Engineering pg. 878-883

[4] Aldy Gunawan, Kien Ming Ng, Kim Leng Poh; An Improvement
Heuristic for the Timetabling Problem. International Journal of
Computational Science 1(2007) 162-178

[5] Benjamin G. Thengvall, Jonathan F. Bard, Gang Yu; Balancing user
preferences for aircraft schedule recovery during irregular operations.
IIE Transactions 32(2000) 181-193

[6] Raed Al-Husain, Mohamad K. Hasan, Hameed Al-Qaheri A Se-
quential Three-Stage Integer Goal Programming (IGP) Model for
Faculty-Course-Time-Classroom Assignments. Informatica 35(2011)
157-164

[7] OpenSolver - The Open Source Optimization Solver for Excel. Re-
trieved from,

http://opensolver.org/

.

50


