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Climate change impact assessment is subject to a range of uncertainties due to both incomplete and unknowable knowledge. This
paper presents an approach to quantifying some of these uncertainties within a probabilistic framework. A hierarchical impact model is
developed that addresses uncertainty about future greenhouse gas emissions, the climate sensitivity, and limitations and unpredictability
in general circulation models. The hierarchical model is used in Bayesian Monte-Carlo simulations to define posterior probability distri-
butions for changes in seasonal-mean temperature and precipitation over the United Kingdom that are conditional on prior distributions
for the model parameters. The application of this approach to an impact model is demonstrated using a hydrological example.

1. Introduction

The assessment of impacts of future anthropogenic cli-
mate change on environmental and socio-economic sys-
tems is subject to a range of uncertainties, due to either
“incomplete” knowledge or “unknowable” knowledge [1]
(other typologies of uncertainty are possible – see Schneider
et al. [2] for a recent review). Incomplete knowledge,
which can potentially be redressed in future, arises from
inadequate information or understanding about biophysical
processes or a lack of analytical resources available for im-
pact assessment. Examples include poorly understood cli-
mate physics and computing limitations, both of which limit
the accuracy of general circulation model (GCM) climate
change simulations. Unknowable knowledge stems from
the inherent unpredictability of the Earth system and from
our inability to forecast future socio-economic and human
behaviour in a deterministic manner. An example of this
type of unpredictability arises due to natural climate vari-
ability, both in the real world and in model simulations [3].
Uncertainties about future socio-economic trends have re-
sulted in the wide range of future greenhouse gas (GHG)
emissions pathways reported in the literature [4,5]. These
unknowables are not “wholly unknowable” because there
are formal procedures that can be used to define subjective
or relative probabilities of occurrence – without knowing
the exact probability of a particular event, we can still tell
whether it is likely or unlikely.

These uncertainties (arising from incomplete and un-
knowable information) cascade through any climate change
impacts assessment in an inter-dependent, but not necessar-
ily additive or multiplicative, manner [6] (figure 1). The
uncertainty surrounding future emissions is further com-
pounded when attempts are made to translate emissions
scenarios into atmospheric concentrations because of in-
complete knowledge about sources and sinks of GHGs and

about their rates of recycling in the Earth system. When
GHG concentrations are then used to drive GCMs in tran-
sient climate change simulations, a plethora of additional
uncertainties arise from the structural/computational limi-
tations and deficiencies in the physics of the GCMs [7].
Uncertainties in the representation of the mean state and
variability of observed climate [8] will affect both the eval-
uation of GCM results and the development and evaluation
of climate impact models. Finally, outputs from impact
models are subject to uncertainties resulting from unknown
aspects of the physics, biology and/or sociology of the sys-
tem being simulated, from inadequacies in the model de-

Figure 1. Schematic showing some of the uncertainties that cascade
through a climate change impacts assessment. The total uncertainty (il-
lustrated by the grey panel, but not to scale) expands as individual uncer-

tainties are combined.
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sign, and from an inability to predict how the system might
adapt to changing climatic conditions (with or without de-
liberate human intervention).

Climate change impacts assessments have typically ad-
dressed these uncertainties in a limited and often haphazard
manner, either through the use of scenarios, or through sen-
sitivity studies, or through a combination of the two [9,10].
Using a single climate change scenario for an impact study
represents a top-down approach to the problem and de-
fines a single trajectory through the cascade of uncertain-
ties described above. No quantified probability is attached
to the simulated outcome. This approach is not particu-
larly useful for risk and adaptation studies. Using several
climate change scenarios provides the end-user of the im-
pact study with a range of possible outcomes, but again
with no attached probabilities. Sensitivity studies are typ-
ically bottom-up in approach, in that the sensitivity of an
impact system to a range of future incremental climate per-
turbations is assessed. This is usually achieved using an
impact simulation model. A sensitivity study can identify
response thresholds in the modelled system and contribute
towards defining a “dangerous” climate change space for
the impact unit [11]. Such studies have not generally as-
sessed the sensitivity of outputs to uncertainties inherent
to the impact model (e.g., uncertain parameter values), but
have instead focussed on the sensitivity to different climate
inputs [12].

This study demonstrates one attempt to quantify some of
the uncertainties associated with climate change impacts as-
sessments using a Bayesian Monte-Carlo analysis of GHG
emissions and climate model results. We use the United
Kingdom as our example. Section 2 describes the Monte-
Carlo methodology and the various input data sets and/or
models used. This is followed in section 3 by a descrip-
tion of our results, including an assessment of the relative
magnitude of each source of uncertainty addressed by our
method. We give an example in section 4 of how our ran-
domised climate change scenarios can be applied to a partic-
ular impact model, in this case a hydrological example. We
conclude in section 5 with a discussion of the merits of this
approach and the implications for climate change impact
and adaptation research and for climate system modelling.

2. Methodology

A Bayesian Monte-Carlo approach to decision-making
involves: (a) the definition of prior probabilities for the pa-
rameters of the model in question; (b) multiple simulations
of the outcome(s) of the model by randomly sampling the
parameter space according to the pre-defined probability
distributions; and (c) the definition of the posterior proba-
bility (or frequency) distribution of the outcomes [12,13].

We define a multi-level model that samples several
greenhouse gas emissions scenarios, a range of climate sen-
sitivities (a key GCM characteristic), and the results from
fourteen transient climate change simulations made using

GCMs. Each of these inputs is described in turn. This ap-
proach derives from that used by Jones [14], although we
develop the sampling of GCM patterns to a greater degree
and consider a wider range of uncertainties.

2.1. Greenhouse gas (GHG) emissions scenarios

Future emissions of GHGs and aerosols fall into the cat-
egory of “unknowable” knowledge because they will be
a function of inherently unpredictable socio-economic and
technological behaviour (although we can make subjective
judgements about what emissions have low or high proba-
bility – for example, 400 Gt CO2 emissions can be ruled out
except at extremely low probabilities). In an attempt to em-
brace this uncertainty, emissions modellers have adopted a
scenario approach, whereby different assumptions are made
about key emissions drivers such as population, economic
growth and energy technology. Thus six emissions sce-
narios were published in the 1992 Intergovernmental Panel
on Climate Change (IPCC) report (IS92a–f [5]) and more
recently, the IPCC special report on emissions scenarios
(SRES) [15] have prepared a set of 40 emissions scenar-
ios. The latter set of SRES scenarios derives from four in-
dependent socio-economic storylines. Scenarios from any
one storyline, however, can have markedly different emis-
sions outcomes due to alternative interpretations of the sto-
ryline and due to differences between emissions models that
quantify the impact of the socio-economic assumptions. In
this process modellers have made subjective judgements in
defining the storylines, about the structure of their models,
and about what the parameter values of these models should
be. The resultant emissions scenarios therefore contain an
“in-built” subjectivity that precludes low-probability (in the
opinion of the modellers) emissions futures.

We make use of the four preliminary SRES marker sce-
narios – A1, A2, B1 and B2 – considered to be most rep-
resentative of each storyline [16]. These four scenarios
encompass a large proportion (about 80–90%) of the range
of emissions futures contained in both the SRES and in
other emissions scenarios published in the wider literature
(figure 2). We initially assume that each of these four emis-
sions trajectories are equally likely to occur, although we
later vary this assumption.

2.2. The climate sensitivity

We use the MAGICC climate model [17,18] to convert
the emissions scenarios into atmospheric concentrations of
the various greenhouse gases and hence to calculate global-
mean temperature at three future 30-year time horizons cen-
tred on 2025 (the 2020s), 2055 (the 2050s) and 2085 (the
2080s).

MAGICC parameterises a number of key atmospheric
and ocean processes allowing the model to emulate the
behaviour of more complex GCMs. The strength of the
terrestrial carbon sink and the oceanic deep-water forma-
tion rate are two of these key parameters, but in our ex-
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Figure 2. Preliminary SRES marker CO2 emission scenarios [14] in the context of scenarios for CO2 emissions from the wider literature (the “database”)
(A. Grübler, personal communication).

ercise we only consider the single most important para-
meter, the climate sensitivity. The climate sensitivity of
the climate system can be defined as the increase in the
equilibrium global-mean surface air temperature due to a
doubling of atmospheric CO2 concentration. The IPCC
have always quoted the climate sensitivity to be in the
range 1.5–4.5 ◦C [19,20]. In a study in which 16 leading
climate scientists in the USA were asked to assign confi-
dence intervals for the climate sensitivity [21], the major-
ity of respondents put the lower 5th percentile at 1–2 ◦C
and the upper 95th percentile at 4–7◦C; this broadly corre-
sponds to the IPCC range, but with a distribution skewed
towards slightly higher temperatures. We adopt the IPCC
range for the climate sensitivity parameter in our model
and assume a simple triangular probability distribution (fig-
ure 3), implying that the central value of 3.0 ◦C is most
likely. Other distributions are also possible. For exam-
ple, Tol and De Vos [22], in a Bayesian analysis of ex-
pert opinion on the climate sensitivity showed that, with
their model, the posterior distribution of the climate sen-
sitivity was skewed towards higher values than the IPCC
estimate. In contrast, Dickinson [23] has suggested a dis-
tribution skewed toward lower sensitivities, consistent with
an analysis of uncertainties in climate feedbacks. We later
assess the effect of alternative prior distributions of the cli-
mate sensitivity on the final outcomes of our hierarchical
model.

We use MAGICC to calculate the global-mean temper-
ature change at each time slice and under each emissions
scenario, for the above range of climate sensitivities. As-
suming (reasonably) that the probabilities of the four emis-
sions trajectories and those of the climate sensitivity are in-
dependent, the resulting global-mean temperature outcomes
may represent about 80% of the likely output distribution.
Sulphate aerosol concentrations are not considered in our
experimental design (although MAGICC can account for

Figure 3. Global-mean temperature predicted by MAGICC as a function
of the four preliminary SRES marker scenarios, and a range of climate
sensitivities (histogram), by the 2020s (thin curve), 2050s (medium curve)
and the 2080s (thick curve). The height of the histogram corresponds to
the climate sensitivity probability distribution that was used in the initial

simulations.

aerosol forcing). This is primarily because the mecha-
nisms of aerosol forcing on climate are much less certain,
and hence much more difficult to simulate than greenhouse
gas forcing (in both MAGICC and the GCMS whose re-
sults are used later). Furthermore, by the end of the next
century, which is the period from which we extract the
GCM data, the forcing from aerosols is likely to be small
relative to greenhouse gas forcing. Figure 3 summarises
the global-mean temperature outcomes under the assump-
tions described in this and the previous section. These
discrete outcomes, and their associated probabilities, were
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integrated to 0.1 ◦C intervals to provide a more continuous
prior distribution of global-mean temperature.

2.3. GCM uncertainties

The above analysis generates a distribution of global-
mean temperature changes. We are interested, however, in
relating these to regional climate change outcomes, for ex-
ample, for domains within the UK. To achieve this next goal
we therefore use the results of seven GCMs archived and
described at the IPCC Data Distribution Centre (DDC [24])
to address two additional sources of uncertainty about fu-
ture regional climate change. These uncertainties arise from
GCM limitations and from climate system unpredictabil-
ity. The model simulations available to us include two en-
sembles of four simulations each made using the HadCM2
GCM, plus single simulations made by six other models:
ECHAM4, CSIRO-Mk2b, CGCM1, CCSR-98 and NCAR-
DOE (see table 1). All these simulations were driven by
changes in GHG forcing, without consideration of the effect
of sulphate aerosols. The two HadCM2 ensembles were
forced from 1990 by the IS92a and IS92d scenarios [5],
corresponding approximately to 1 and 0.5% compound an-
nual increases in CO2 equivalent atmospheric concentra-
tions. The remaining six simulations were all forced by
similar (IS92a) 1% per annum compounded increases in
GHG concentrations. The fourteen simulations are treated
as a “super-ensemble”, in which differences in regional cli-
mate outcomes due to inter-model differences and climate
system unpredictability are not differentiated.

Results from each simulation were given equal prior
probability under the assumption that all models perform
equally well. Although this will not be the case, it is a rea-
sonable initial assumption to make. As a consequence, the
HadCM2 GCM is sampled nearly 60% of the time (8/14).
This implies that uncertainty due to inter-model differences
is not sampled uniformly, but uncertainty due to system
unpredictability is sampled uniformly.

Table 1
Characteristics of the seven GCMs available at the IPCC Data Distribution

Centre from which experimental results were used in this study.a

Country of Approximate Climate Integration Reference
origin resolution sensitivity length

(lat. × long.) (◦C)

CCSR-98 Japan 5.62◦ by 5.62◦ 3.5 1890–2099 [35]
CGCM1 Canada 3.75◦ by 3.75◦ 3.5 1900–2100 [36]
CSIRO-Mk2 Australia 3.21◦ by 5.62◦ 4.3 1881–2100 [37]
ECHAM4 Germany 2.81◦ by 2.81◦ 2.6 1860–2099 [38]
GFDL-R15 USA 4.50◦ by 7.50◦ 3.7 1958–2057 [39]
HadCM2b UK 2.50◦ by 3.75◦ 2.5 1860–2099 [40]
NCAR-DOE USA 4.50◦ by 7.50◦ 4.6 1901–2036 [41]

a Only the greenhouse gas forced integrations were used here. The climate
sensitivity describes the equilibrium global-mean surface air temperature
change of each model following a doubling of atmospheric carbon diox-
ide concentration.

b Two ensembles of four climate change simulations each were available
from the HadCM2 model.

We extracted climate change signals in mean temper-
ature (∆T ) and precipitation (∆P ) for the 30-year period
centred on the 2080s for winter (DJF) and summer (JJA)
seasons from each simulation for model land grid boxes
located over Scotland and Eastern England. The 2080s
period was used to maximise the climate change signal-
to-noise [25]. For the GFDL-R15 and NCAR-DOE sim-
ulations we used the period centred on the 2020s because
the simulations only extend to 2057 and 2036, respectively.
This difference in sampling period is accounted for by the
pattern-scaling method described below.

To remove the effects of different GCM climate sensi-
tivities, the varying GHG forcings that were used in each
GCM run, and the contrasting time periods that were sam-
pled, the regional climate change signal in each GCM was
standardised against its respective global-mean temperature
change for the sampled time period. These standardised
results were then scaled by the global-mean temperature
changes simulated by MAGICC using the output distribu-
tion created in section 2.2. In this way, the regional pat-
tern of climate change by, say, the 2050s from a GCM
with a large global warming by the 2080s (i.e., a high
model climate sensitivity) would be scaled downwards in
proportion to the ratio of the model’s global warming to
that computed by MAGICC in section 2.2. This pattern-
scaling method was first proposed and illustrated by Santer
et al. [26] and the technique has been widely adopted and
developed further in other subsequent climate scenario stud-
ies (e.g., Schlesinger et al. [27]). It assumes that the re-
gional pattern of climate change due to greenhouse gas
forcing (the greenhouse “signal”) remains invariant both
over time and for different levels of forcing. There is some
support in the literature for this contention (e.g., Mitchell
et al. [25]), although Schneider and Thompson [28] have
suggested that regional patterns of climate change may not
be linearly related to the global temperature signal. The
raw and standardised ∆T and ∆P signals are shown in fig-
ure 4.

Each GCM climate change signal represents one sample
from the population of changes that would be produced by
a suitably large ensemble of simulations using that partic-
ular GCM. The variance of this population would repre-
sent the unpredictability of the model climate system and
should be similar to the variance of 30-year means simu-
lated in the GCM control simulation. Some change in this
30-year multi-decadal variance may arise from GHG forc-
ing, but we ignore this for now. We calculated the variance
in 30-year mean seasonal temperature and precipitation for
the respective grid boxes in the 1400-year HadCM2 con-
trol integration [29] and use these variances to add “climate
system noise” to the extracted GCM ∆T and ∆P climate
change signals. This is achieved by assuming a normal dis-
tribution for the forty six 30-year means extracted from the
control integration and randomly sampling the standard de-
viates of this distribution. This random noise is then added
as a final layer to our Monte-Carlo regional climate change
outcomes. This approach is probably over-generous in its
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Figure 4. Pairs of scaled (left-hand symbols) and raw (right-hand symbols) 30-year mean changes (for the 2080s with respect to the 1961–1990 mean)
in DJF and JJA mean temperature and precipitation over Scotland and Eastern England. The scaled changes are standardised against the corresponding
GCM global-mean temperature change, and are therefore expressed in units of ◦C (or mm/day) per ◦C change in global-mean temperature. The raw
changes were extracted directly from the GCMs for the 2080s period (except NCAR and GFDL where the 2020s were used). All GCM fields were

interpolated onto the HadCM2 grid before the ∆T and ∆P information was extracted.

allowance for natural variability because the random noise
is additive to the uncertainty about how far each individ-
ual GCM experiment result lies from the (infinitely large)
ensemble or population mean.

3. Results

3.1. Initial simulations

Having defined a hierarchical probabilistic model to pre-
dict climate change in the 2080s over Scotland and Eastern
England, we then ran an initial Monte-Carlo simulation of
the model, with 50,000 iterations, using the a priori prob-
ability distributions described above. The outcomes, ∆T
and ∆P in the 2080s, were a function of random sampling
of emissions scenario, climate sensitivity, regional GCM
signal and climate system noise, and were analysed to pro-

duce a two-dimensional posterior probability histogram for
each region. The histogram was then contoured at the 95th,
75th, 50th, 75th and 5th percentiles (figure 5). The outer-
most contour therefore represents the 95th percentile, with
95% of all outcomes falling within this contour.

The basic shape of the posterior distribution is primarily
controlled by the relatively small sample of GCM outputs.
A large scatter in ∆P (as in Scotland in JJA) or ∆T (as in
Eastern England in JJA) from the GCMs produces a cor-
respondingly less compact posterior distribution. The cli-
mate noise component that was added ensures some neg-
ative DJF ∆P outcomes in both regions, despite none of
the GCMs having a negative signal in this season. The
relatively tightly constrained standardised ∆T s and ∆P s in
Scotland (cf. figure 4) result in a similarly constrained 5th
percentile in figure 4. The location of this central isoline is
a function of the triangular a priori distribution assigned to
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Figure 5. Results from the initial 50,000 Monte-Carlo simulations sampling the hierarchical model of ∆T and ∆P described in section 2. Dots represent
individual outcomes of the model; contours are 95th, 75th, 50th, 25th and 5th percentiles of the resulting two-dimensional probability density histogram;

squares are individual 30-year mean ∆T and ∆P over each region, calculated from the 1400 year HadCM2 control integration.

the climate sensitivity parameter. In contrast, the less com-
pact distribution of GCM ∆T s and ∆P s for JJA in Eastern
England (figure 4) results in a less compact posterior dis-
tribution (figure 5).

Also shown in figure 5 are 30-year means of T and P
(expressed as anomalies from long-term mean) extracted
from the 1400-year HadCM2 control integration, providing
an indication of the natural variability (or climate noise) in
mean seasonal temperature and precipitation that might be
expected over the two regions. The entire range of future
∆T outcomes is clearly distinguishable from climate noise
in the HadCM2 simulation, but only about half of the future
winter ∆P outcomes (more in summer) are distinguishable
from climate noise.

It is interesting to note that the positive correlations be-
tween ∆T and ∆P in winter in the control simulation for
both regions are also present in the climate change out-
comes, suggesting that this co-relationship is a fairly ro-
bust result in the future model world. The reasons for
this are fairly well understood, with increased temper-
ature resulting in a moister atmosphere (increased spe-
cific humidity) and consequent increased moisture flux
into rainfall regions [30]. In contrast, the control simu-
lation does not exhibit a strong T–P relationship in sum-
mer in either region. This result is paralleled by the cli-
mate change outcomes in Scotland, where the individual
T–P changes in JJA do not display any marked correla-
tion. In Eastern England, however, future JJA climates
show a negative correlation between T and P . Mecha-

nisms driving these summer changes are not as well under-
stood [30].

3.2. Other distributions

Our choice of a priori distributions for each parameter
in the hierarchical model was rather arbitrary, with only
the climate sensitivity assigned a non-uniform (non-diffuse)
distribution. We investigated the sensitivity of the output
distribution to alternative input distributions and found that,
while the details of the posteriors varied, the overall pattern
was similar to those described above. This is illustrated
with a few examples in the sections that follow.

3.2.1. Individual models
We first investigated how the sampling of individual

GCMs affects the results of the analysis. All input probabil-
ity distributions, except for the GCMs, were kept the same
as in the initial simulations. We sampled each GCM in
turn in a series of separate Monte-Carlo simulations; thus,
at each GCM iteration, the probability of the selected GCM
was one and all others was zero. The results of this exercise
for Scotland are displayed in figure 6. The different poste-
rior distributions arise solely from the different ∆T and ∆P
patterns of the GCMs (figure 4). Thus the CGCM1 poste-
rior outcomes are the most tightly constrained because this
GCM has the lowest ∆T and ∆P over the UK (when scaled
by the model ∆Tglo climate sensitivity). The CCSR-98 and
ECHAM4 posteriors are more elongate because these two
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Figure 6. 95th percentiles of the outcomes of the hierarchical model over Scotland, when each GCM is sampled in turn. The bold black line is the
95th percentile of all model outcomes (i.e., assuming all models are equally likely). The model acronyms refer to the list in table 1; these are followed

by “A” or “D”, representing a 1% or 0.5% CO2-equivalent forcing, and a number from one to four, representing the ensemble member number.

models have the largest scaled ∆T s. The combined pos-
terior, using the results from all model outcomes, overlaps
all the individual posteriors. Those outcomes that are dif-
ferent from the majority, however, do not have as great
an overlap with the combined posterior (e.g., GFDL-R15
in JJA-Scotland). Clearly, if the set of simulations in sec-
tion 3.1 was repeated assuming a non-uniform likelihood
for the GCMs, the posteriors will be biased towards mod-
els with higher likelihood.

3.2.2. Climate sensitivity
In our initial simulations we assumed a triangular prior

distribution for the climate sensitivity parameter. Here we
investigate the sensitivity of the posterior to alternative pri-
ors for this parameter. A set of four simulations with dif-
ferent climate sensitivity priors was undertaken. As with
previous simulations, the frequency distributions of climate
sensitivity from 1.5 to 4.5 ◦C were expressed as simple
integer values and re-expressed as a probability distribu-
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Table 2
Frequency distributions of the climate sensitivity parameter used in each
of four simulations to test the sensitivity of the model outcome distri-
butions to the different a priori probability distribution of this parame-

ter.

Simulation Climate sensitivity/frequency

1.5 ◦C 2.0 ◦C 2.5 ◦C 3.0 ◦C 3.5 ◦C 4.0 ◦C 4.5 ◦C

1 1 5 8 3 1 1 0
2 1 0 0 0 0 0 0
3 1 0 0 0 0 0 1
4 1 2 3 4 3 2 1

tion that could be sampled on a Monte-Carlo basis. The
prior distributions range in form from an extreme case, in
which a single low sensitivity of 1.5 ◦C is sampled with a
probability of 1.0, through bimodal and skewed triangular
distributions, to the original symmetrical triangular shape
used in section 3.1 (table 2).

The resulting posterior distributions vary as a function
of the prior distributions, as illustrated for DJF East Eng-
land (figure 7). The most elongate posterior arises from
the bimodal (1000001) prior distribution, which maximises
the sampling frequency at high and low climate sensitivi-
ties. As might be expected, the most constrained posterior
is produced by the single-outcome (1000000) prior distrib-
ution, with the 95th percentile not extending beyond a ∆T
of about 2.5 ◦C. The posteriors arising from the other two
(triangular) priors are intermediate between these two end
cases, and fairly similar.

The internal structure of the posterior distributions under
these different sampling strategies for the climate sensitivity
also differs. The triangular and skewed priors produce sim-
ilar internal structures, as indicated by the 50th percentiles.
The main difference lies in the symmetrical triangular prior
producing a more elongate posterior. In contrast, the bi-
modal prior produces a similarly bimodal 50th percentile,
and the single value prior results in a very tightly con-
strained 50th percentile.

3.2.3. SRES scenarios
In the initial set of simulations (section 3.1) we as-

sumed that each preliminary SRES marker emissions sce-
nario was equally likely. Figure 8 shows the effect of sam-
pling each emissions scenario in isolation, once again for
DJF over eastern England. In other words, we show the
results of four separate Monte-Carlo simulations where one
emissions scenario is in turn assigned a prior probabil-
ity of one and the other three emissions priors are zero.
All other parameters are sampled as in the initial exer-
cise in section 3.1. By the 2020s there is little difference
between the posteriors for each of these cases. This is
because the emissions, and therefore the resulting global-
mean temperatures, have not diverged very much from their
common 1990 starting points, and also because a propor-
tion of the warming is inherited from pre-1990s forcing,
which was the same (i.e., that observed) in all scenar-
ios.

By the 2080s, some larger differences between the SRES
scenarios become apparent. Here the emissions, and hence
the concentration pathways, have diverged more substan-
tially as a consequence of different future worlds. Thus,
it is only in the second half of the 21st century that dif-
ferent emissions futures begin to become distinguishable
against the noise arising from other uncertainties in our
model framework.

4. Application to an impact model

The approach described above provides one route to the
quantification of uncertainty (or certainty) associated with
regional climate change – expressed in terms of uncertain-
ties in global-scale forcings and predictability, and in terms
of the regional manifestations of global change. While this
is a useful exercise in itself for providing a coherent frame-
work for handling different sources of uncertainty in climate
change scenarios, its full value becomes apparent when ap-
plied to an impact assessment [14]. Here we apply the
results of a hydrological sensitivity analysis, where the re-
sponse of river flow to changes in mean precipitation and
temperature was simulated using a catchment hydrological
model. The hydrological simulations enable the definition
of a response surface of the hydrological variable of inter-
est (in this case mean annual river flow) in climate change
(∆T and ∆P ) space (figure 9, top).

The posterior probability distribution from the Monte-
Carlo climate change analysis defined the likelihood of dif-
ferent ∆T and ∆P combinations over the hydrological re-
sponse surface. This is also illustrated in figure 9 (top)
where the joint posterior distribution of annual ∆T and ∆P
for Scotland is overlaid on the hydrological response sur-
face. The intersection of the posterior climate change distri-
bution with the response surface therefore enabled the prob-
ability of annual flow at each point on the response surface
to be defined in terms of the climate change probabilities
arising from the Monte-Carlo simulations. The response
surface could then be sampled in terms of the likelihood
of changes in flow, expressed as a frequency distribution
or, more usefully, a cumulative probability distribution for
future flow (figure 9, middle).

Both the posterior climate change distribution that arises
from the hierarchical model, and the derived probability
distribution for the impact system of interest (in this case,
annual river flow) represent a significant step towards a
quantification of uncertainty, and therefore risk, that can be
used by decision-makers [31]. The real power of this ap-
proach is illustrated in the bottom panel of figure 9. Here
the calculation of the frequency distribution (and cumu-
lative probability distribution) of changes in mean annual
flow is repeated at twenty year intervals from 2000 to 2100.
This enables the change in the probability of particular
thresholds (which could be either “dangerous” or “desir-
able”) to be tracked forward in time, and the identifica-
tion of the time at which a user-defined probability of a



M. New, M. Hulme / Representing uncertainty in climate change scenarios 211

Figure 7. 95th and 50th percentiles of the posterior distributions for DJF East England, when different prior distributions for the climate sensitivity
parameter are used (see section 3.2 and table 2 for details).

Figure 8. 95th and 50th percentiles of the posterior distributions for DJF East England, when each SRES emissions scenario is sampled in isolation,
for different periods in the 21st century. Prior distributions of the other parameters remain as in the initial simulations in section 3.1.

threshold being exceeded is reached. For example, from
figure 9 we can show that the probability of a 20% in-
crease in mean annual flow expands from 0.05 in 2000 to
0.5 in 2100.

The approach used in this example makes no as-
sumptions about parameter uncertainty in the hydrolog-

ical model. There is nothing preventing the integration
of this hydrological model within our overall hierarchi-
cal Monte-Carlo model structure. With appropriate esti-
mates for the hydrological model parameter prior dis-
tributions, a more comprehensive uncertainty analysis
would be possible. Indeed, this approach to uncertainty
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Figure 9. Application of the posterior probability distribution of the cli-
mate change model (Scotland annual) to a (nominal) response surface of
change (in percent) in mean annual river flow in ∆T and ∆P space. Top:
response surface showing the percent change in mean annual river flow
as a function of ∆T and ∆P , with the posterior bivariate climate change
frequency distribution superimposed on the response surface. Middle:
the probability distribution and the cumulative probability distribution of
changes in flow, derived by counting the relative frequency of the poste-
rior climate change distribution at each point on the response surface (see
section 4 for more detail). Bottom: the time-evolution of probabilities of

changes in mean annual flow from 2000 to 2100.

analysis is already well established in hydrological mod-
elling [32,33].

5. Discussion and conclusions

We have presented a methodology that quantifies a num-
ber of uncertainties inherent in the generation of future cli-
mate change information for climate impacts assessments.
The approach is Bayesian in that it assumes that key para-
meters in our hierarchical predictive model have distribu-
tions that are either diffuse or defined. The model is then
run in a Monte-Carlo simulation that samples the parameter
space as defined by the prior probabilities. The model out-
puts – regional ∆T and ∆P – are then analysed to produce

an empirical bivariate probability distribution that can be
used to quantify the uncertainty in the model predictions.

The model described here, however, represents an in-
complete representation of uncertainties in climate change
prediction. In particular, uncertainties in GCMs are only
partially addressed by the use of a “super ensemble” of
model outputs. The assumption here is that the range in
GCM outputs is due to model inadequacies and parameter
uncertainties, as well as due to climate system internal vari-
ability. A complete uncertainty analysis of GCM parameter
values is theoretically possible [12], but beyond present day
computing capacity. Even if such an analysis were feasible,
uncertainty due to inadequacies in model physics would re-
main. In addition, the GCM results do not include outcomes
that represent extremely low-probability high-impact events
such as might be associated with the breakdown of the ther-
mohaline circulation (THC) [34]. Most models do show a
weakening of the THC, and its regional impact is therefore
implicitly contained in the regional GCM patterns. A com-
plete breakdown of the THC could conceivably be included
in our model by introducing an arbitrary regional GCM re-
sponse that yields cooling rather than warming, with an
associated (subjective) probability distribution. Scaling the
regional GCM changes in a negative direction may, how-
ever, be demanding too much of the pattern-scaling ap-
proach used here.

The four SRES emissions scenarios that were used rep-
resent a discrete (and incomplete) sample of the range of
possible emissions futures. The full spectrum of SRES
emissions futures encompasses 40 different scenarios and
there are many additional scenarios in the refereed and pop-
ular literature. However, the four preliminary marker sce-
narios that we use span about 90% of the range in future
emissions in the wider literature. If one assumes a diffuse
prior probability for these scenarios (all equally likely), the
posterior will be very similar to one where all 40 SRES
emissions scenarios are sampled.

We have limited our analysis to a 21st century time
frame. This clearly ignores the more “dangerous” climate
changes that are likely to occur in the 22nd century and
beyond, where tripling (or even quintupling) of CO2 levels
may occur. However, our main thrust has been to describe
our methodology, not to define the evolving probabilities
of particular thresholds for climate change over the United
Kingdom. The examples we have used serve mainly to
illustrate our approach.

As with the parameters in the GCMs, the hierarchical
model used here does not address the full parameter un-
certainty in the MAGICC climate model. These include
assumptions about the rates of cycling, and sources and
sinks, for CO2 and other gases, and the conversion of at-
mospheric concentrations into global warming potentials.
A more rigorous approach should also include these uncer-
tainties.

We applied the model output probability distribution to
a response surface of annual river flow in ∆T and ∆P space
to derive a probability distribution for future flow changes
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as a function of changes in the hydrological driving vari-
ables T and P . This “add on” approach to quantifying the
effect of climate change on an impact system is an inter-
mediate step towards a fully integrated modelling approach
where the impact model is incorporated within the Bayesian
Monte-Carlo framework. Full integration would enable an
assessment of the influence of parameter uncertainty in the
impact model on the final output distribution. This is work
we intend to pursue in the future.
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