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Climate impact response functions for terrestrial ecosystems
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We introduce climate impact response functions as a means for summarizing and visualizing the responses of climate-sensitive sectors
to changes in fundamental drivers of global climate change. In an inverse application, they allow the translation of thresholds for climate
change impacts (‘impact guard-rails’) into constraints for climate and atmospheric composition parameters (‘climate windows’). It thus
becomes feasible to specify long-term objectives for climate protection with respect to the impacts of climate change instead of crude proxy
variables, like the change in global mean temperature. We apply the method to assess impacts on terrestrial ecosystems, using the threat
to protected areas as the central impact indicator. Future climate states are characterized by geographically and seasonally explicit climate
change patterns for temperature, precipitation and cloud cover, and by their atmospheric CO2 concentration. The patterns are based on the
results of coupled general circulation models. We study the sensitivity of the impact indicators and the corresponding climate windows
to the spatial coverage of the analysis and to different climate change projections. This enables us to identify the most sensitive biomes
and regions, and to determine those factors which significantly influence the results of the impact assessment. Based on the analysis,
we conclude that climate impact response functions are a valuable means for the representation of climate change impacts across a wide
range of plausible futures. They are particularly useful in integrated assessment models of climate change based on optimizing or inverse
approaches where the on-line simulation of climate impacts by sophisticated impact models is infeasible due to their high computational
demand.
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1. Introduction

Through a wide range of activities, humankind is altering
the composition of the atmosphere and changing the climate
on Earth [1]. There is increasing evidence that recent cli-
matic change has altered the range, the physiology, and the
seasonal cycle of plants [2–5] and animals [6–8], and that it
already led to the extinction of species [9]. Major and abrupt
climatic changes have often had devastating effects on biodi-
versity in prehistorical times. About 200 million years ago,
for instance, the end-Triassic mass extinction event resulted
in more than 95% turnover of megafloral species. A three- to
fourfold increase in CO2 (due to extensive basaltic volcanic-
ity) associated with a 3–4◦C rise in global mean temperature
has been suggested as the basic cause for this event [10].

The impact of anticipated climate change on natural vege-
tation has been extensively studied over the last years. Major
themes of interest were the equilibrium vegetation distribu-
tion in a changed climate [11–14], the transient response of
ecosystems to climate change [15–17], and the feedback of
vegetation change on the biogeochemical cycles [18–23].

Contrary to existing studies that assess the vegetation re-
sponse to climate change for specific scenarios only, we
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present simulated impacts for a wide range of plausible
futures in the form of climate impact response functions
(CIRFs). On the one hand, CIRFs enable the identification of
sensitive regions and key drivers for vegetation change. On
the other hand, CIRFs allow to translate guard-rails for veg-
etation impacts backwards into corresponding climate win-
dows, i.e., subsets of their domain.

The CIRFs presented in this paper form a part of
the ICLIPS (Integrated Assessment of Climate Protection
Strategies) model. This integrated assessment model of cli-
mate change is based on the guard-rail approach (syn. toler-
able windows approach), a novel decision-analytical frame-
work for the integrated modelling of climate change [24].

Policy-makers involved in the implementation of the
United Nations Framework Convention on Climate Change
(UNFCCC) are faced with its ambitious objective stated in
Article 2 “to prevent dangerous anthropogenic interference
with the climate system” and, at the same time, “to en-
able economic development to proceed in a sustainable man-
ner” [25]. A typical application of the ICLIPS model starts
from normatively specified impact guard-rails and additional
socio-economic constraints that shall make these potentially
conflicting goals manageable. In a second step, sets of ‘tol-
erable’ climate protection strategies are determined numer-
ically by simultaneously obeying all constraints [26–28].
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Since the final specification of ‘appropriate’ guard-rails is
made by policy-makers, not by scientists, the guard-rail ap-
proach allows for a clear separation of the inherently norma-
tive decision on minimum requirements for climate policy
on the one hand, and the scientific analysis of the relevant
parts of the Earth system on the other hand.

This paper is organized as follows. In section 2, we de-
scribe the methods and models applied. Model results, in-
cluding various sensitivity tests, are presented in section 3,
and section 4 concludes the paper.

2. Methods

In this section, we present the underlying models and
methods for the assessment of climate impacts on natural
vegetation. We start with a description of the vegetation
model and of the chosen impact indicators. Subsequently,
we explain the climate projections applied and introduce the
concept of climate impact response functions. We close with
a presentation of various sensitivity analyses.

2.1. Modelling of vegetation impacts

We apply the equilibrium vegetation model BIOME 1
[29], adapted for IMAGE 2.1 [30,31], to simulate the veg-
etation distribution for current and future climate states on a
0.5◦ latitude by 0.5◦ longitude grid. The model determines
the potential vegetation in a grid cell based on monthly data
for temperature, precipitation, and solar radiation as well as
atmospheric CO2 and soil properties. In a first step, vari-
ous bioclimatic indices are derived, for instance the effective
temperature sum above certain temperature thresholds and a
moisture index. BIOME 1 defines climatic envelopes based
on these indices for 16 plant functional types (PFTs). Cli-
matic threshold values for ecosystems are actually observ-
able in nature [32]. These constraints are used in a second
step to determine which of the 16 PFTs can principally oc-
cur, based on the non-violation of any of the constraints. In
a final step, BIOME 1 applies a dominance hierarchy as a
proxy for competition between different PFTs. 14 biomes
are defined as combinations of one or more PFTs at the same
hierarchy level. For a list of all biomes, see figure 4.

BIOME 1 has been extensively used for assessing the re-
sponse of natural vegetation to anticipated climatic changes
[33,34]. Improvements in IMAGE 2.1 include the effects of
elevated CO2 levels on the water-use efficiency of plants.
Indirect impacts of climate change on vegetation due to al-
tered disturbance regimes (e.g., forest fires, insect pests, and
wind storms) and transient processes such as migration are
not considered in the model.

Progress has recently been achieved in developing dy-
namic vegetation models [35–37]. The level of physiolog-
ical detail included in these models allows to simulate short-
term vegetation change, and to assess the productivity and
the carbon dynamics of ecosystems. Dynamic aspects were
shown, however, to be of minor importance for indicators

that are solely based on the long-term distribution of biomes
[16]. The application of a structurally simpler and computa-
tionally more efficient biome model is therefore justified in
the ICLIPS model.

2.2. Aggregated indicators for vegetation impacts

Similar to previous studies of this subject [11,14,38], we
use the percentage of an area where the current biome is
no longer viable as the main indicator to quantify the im-
pacts of climate change on natural vegetation. This indi-
cator values all simulated biome changes equal. We have
intentionally refrained from applying more elaborated dis-
tance measures between biomes, like the “dissimilarity in-
dex” [39], because we suspect them to be less comprehen-
sible for the non-expert users of the ICLIPS model. Since
biomes are rather coarse categories, significant ecosystem
impacts may occur even if no biome change is simulated.
In areas with high biodiversity, for instance in most tropical
forests, species generally have a small niche volume and are
thus particularly sensitive to climatic change [40,41]. The
figures presented in this paper are therefore regarded as low
estimates of climate impacts on ecosystems.

There are various ways for “ecosystems to adapt naturally
to climate change” (UNFCCC, Art. 2), namely by acclimati-
zation, migration, and evolution. Evolution typically occurs
at time scales that are much longer than those associated
with anthropogenic climate change. Migration is therefore
the most important adaptation mechanism for ecosystems
beyond their limits of physiological acclimatization. It rep-
resents, however, only an inferior adaptation since ecosys-
tems will not move wholesale in response to climate change.

We will generally restrict the analysis of vegetation im-
pacts to protected areas like nature reserves, national parks,
and wildlife sanctuaries. Migration has only limited rele-
vance for areas that are legally protected in their current
state. Any major vegetation change will typically threaten
the very objectives for their protection, no matter whether it
occurs fast or slow. Furthermore, other anthropogenic stress
factors like land-use change are generally less important in
protected areas than elsewhere.

From an ecological point of view, it might appear desir-
able to assign higher weights to impacts in species-rich areas
and centers of endemism than elsewhere [42,43]. However,
we do not implement this idea since such an attempt to in-
crease the ‘scientific power’ of the aggregated impact indica-
tor is likely to decrease its comprehensibility to non-experts.

As additional impact indicators, we use the stable area
and the total area of individual biomes relative to the base-
line figure, whereby the entire land area is considered. The
stable area corresponds to a pessimistic view of adaptation
that does not account for the establishment of biomes at lo-
cations that become climatically suitable in the future. The
total area corresponds to a rather optimistic view where bio-
mes suddenly pop up as soon as the climatic conditions be-
come suitable, regardless of restrictions related to dispersion
potentials and the availability of migration corridors. While
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the stable area never exceeds the baseline area, the total area
can be either smaller or larger.

2.3. Climate projections

Computational restrictions require integrated assessment
models to apply reduced-form substitutes of complex cli-
mate models. Various approaches have been developed
to construct climate change scenarios for (global) impact
analyses. Two of them are particularly suitable for the para-
meterized description of a wide range of future climate states
[44–47].

In the incremental changes approach, changes in a few
climate variables (typically annual temperature and precipi-
tation) are applied uniformly across the entire region under
consideration [48]. While this approach is useful for a gen-
eral assessment of potential climate change impacts, it does
not take advantage of the information available from com-
plex climate models.

The scaled scenario approach describes future climate
change by scaling spatial patterns of climate anomalies to
the respective change in the globally and annually averaged
near-surface temperature (global mean temperature, GMT).
The patterns are derived from forcing experiments with gen-
eral circulation models (GCMs) and consistently take into
account the spatial and seasonal variability of the simulated
climate anomalies. The scaled scenario approach is based
on the assumption that the transient change in many perti-
nent climate variables is approximately linearly dependent
on the change in GMT. Additional dimensions would be re-
quired to capture important non-linear effects, for instance, a
regional cooling caused by a weakening of the global ocean
circulation [49].

The ICLIPS climate model implements the scaled sce-
nario approach. Efficiency and flexibility are achieved by ap-
proximating the results of transient GCM experiments under
increasing greenhouse gas concentrations through a separate
description of their dynamical behaviour and their spatial
variability. The following characteristics of transient GCM
experiments are mimicked by the ICLIPS climate model.

1. The climate sensitivity of a climate model, denoted as
�T2×CO2, is defined as the equilibrium change in GMT
following a doubling of the equivalent CO2 concentra-
tion. The latter states the concentration level of CO2

that yields the same radiative forcing as the combination
of all greenhouse gases in the atmosphere. Since suffi-
ciently long integrations of fully coupled GCMs would
be too costly, their climate sensitivity needs to be approx-
imated. This is most commonly achieved by coupling the
atmospheric GCM component to a simple mixed-layer
ocean. Alternatively, a technique based upon a linear
response theory can be applied (see equation (4)). Es-
timates of �T2×CO2 for a GCM may vary depending on
the applied approximation technique and the specific in-
tegration that they are based on.

2. The temporal response of a GCM to an increasing forc-
ing can be approximately described by a linear impulse
response function (IRF) of the form

�T (t) ≡
∫ t

t0

�Q(u) · R(t − u) du, (1)

�Q(t) ≡ log2
C(t)

C(t0)
. (2)

�T (t), �Q(t) and C(t) are the time paths of the change
in GMT, the normalized change in radiative forcing (both
compared to the base year t0), and the equivalent CO2
concentration, respectively. The Green function R(t) can
be represented as superposition

R(t) ≡
n∑

i=1

Ai · e−t/τi

τi

(3)

of a number of exponentials of different amplitudes Ai

and (real) relaxation times τi [50]. These parameters are
obtained by fitting the IRF to the results of a transient
GCM experiment.
Equation (1) assumes a linear relationship between ra-
diative forcing and equilibrium GMT changes. This is
a quite common presumption although it is only approx-
imately correct due to various nonlinear processes, for
instance, the ice-albedo feedback [51].
Integration of equation (1) for an instantaneous CO2 dou-
bling, i.e.,

�Q(t) ≡
{

0, t � t0,

1, t > t0,

leads to the following characterization of the climate sen-
sitivity

�T2×CO2 ≡ lim
t→∞ �T (t)

= lim
t→∞

( n∑
i=1

Ai · (1 − e−(t−t0)/τi
))

=
n∑

i=1

Ai. (4)

The relaxation time of the slowest exponential is typically
of the same magnitude or even longer than the length of
a GCM integration. Estimates of its amplitude and even-
tually of the climate sensitivity are therefore subject to
some uncertainty [52].
In order to describe the temporal response of a GCM in-
dependent of its climate sensitivity, the Green function
can be normalized by defining

R̃(t) ≡
n∑

i=1

Ãi · e−t/τi

τi

, (5)

Ãi ≡ Ai

�T2×CO2

. (6)

The Ãi , summing up to 1, represent the fractional con-
tribution of each exponential to the overall temperature
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change. We define the normalized change in GMT over
time as

�T̃ (t) ≡ �T (t)

�T2×CO2

=
∫ t

t0

�Q(u) · R̃(t − u) du. (7)

For any greenhouse-gas stabilization scenario, it follows
that

lim
t→∞ �T̃ (t) = lim

t→∞ �Q(t)

= lim
t→∞ log2

C(t)

C(t0)
. (8)

The normalized change in GMT is thus closely linked to
the concept of “stabilization of greenhouse gas concen-
trations in the atmosphere” (UNFCCC, Art. 2). Such a
GCM-independent correspondence does not exist for the
absolute GMT change.

3. Climate change patterns state the change in a climate
variable at each location given a unit change in GMT.
The most consistent method to separate the spatial and
the temporal variability of the climate change signal in
a transient GCM experiment under increasing radiative
forcing is EOF analysis [53]. The first EOF can be iden-
tified with the dominating spatial pattern of anomalies in
a climate variable between the scenario and the control
run. Alternatively, climate differentials between match-
ing time slices of the control integration and the scenario
integration can be used as climate change patterns.

The results from transient climate change experiments
performed with warm-start coupled atmosphere–ocean gen-
eral circulation models provide the best data available for
investigating the effects of increasing greenhouse gas con-
centrations on the global climate system. Even simulations
for identical greenhouse gas scenarios differ between GCMs
and within members of an ensemble performed with the
same GCM [1]. To account for this uncertainty, we use the
results of three different GCMs in our modelling exercise.

Evaluating the sensitivity of climate change impacts to
the results of different GCM experiments in an integrated
assessment model involves the variation of one, two or all
three of the characteristics listed above. In many impact as-
sessments, the climate sensitivity is varied across the range
from 1.5 to 4.5 K that is considered plausible by IPCC [54],
generally without relating it to specific GCM experiments.
The effects of varying temporal responses have not received
much attention so far, partly because they can only be com-
prehensively assessed by means of dynamic climate impact
models that are still at an early stage of development. Dif-
ferent spatial patterns of climate change are often taken into
account in the application of geographically explicit impact
models.

The default climate change projection in our analysis is
based on two integrations over 850 years of the periodically–
synchronously coupled GCM ECHAM3-LSG at T21 reso-

lution (approximately 5.6◦ by 5.6◦) [51,55]. The equivalent
CO2 concentration is constantly 345 ppmv (about present-
day level) in the control run. In the scenario run, the con-
centration increases fourfold over a period of 120 years and
remains static for the remainder of the simulation. The main
reason for the selection of this GCM experiment was its
long integration period which made it possible to calibrate a
reduced-form climate model to its output [52]. Vegetation–
climate feedbacks and the regional climate effects of sul-
phate aerosols were not considered. Since projections of
future SO2 emissions were significantly reduced by the In-
tergovernmental Panel on Climate Change (IPCC), the re-
gional climate effects associated with them are expected to
be significant only in the early decades of the 21st century
[56]. In addition to the ECHAM3 data, we use climate
change projections from two alternative GCM experiments
that are available through the IPCC Data Distribution Centre.
We chose the ECHAM4GGA1 experiment, performed with
ECHAM4-OPYC3 at T42 resolution (approximately 2.8◦
by 2.8◦) [57,58] and the HadCM2GGAX ensemble exper-
iment, performed with HadCM2 at a resolution of 2.5◦ lati-
tude by 3.75◦ longitude [59].

The normalized IRF (equations (5)–(7)) was calibrated to
the output of the multi-century CO2 quadrupling experiment
with ECHAM3 [52]. The resulting estimates for the tempo-
ral response are used for all GCM emulations:

Ã1 = 0.71, τ1 = 14 a,
Ã2 = 0.29, τ2 = 450 a.

Reported figures for the climate sensitivity of a GCM may
have been determined by different methods. We thus esti-
mated this parameter based on the available data. The cli-
mate sensitivity of ECHAM3 was determined by fitting the
IRF model to the results of a transient CO2 doubling exper-
iment performed with this GCM [51]. Since the ECHAM4
and HadCM2 integrations are based on different forcing sce-
narios, we calculated the climate sensitivity of those mod-
els by dividing the absolute GMT change realized in the fi-
nal 30 year period of the respective integration by the nor-
malized GMT change for the same period. The latter was
computed by applying equation (7) to the respective forc-
ing scenario. The results, which correspond well with those
reported elsewhere, are given in table 1.

The climate change patterns for the ECHAM3 exper-
iment were derived by EOF analysis. The appropriate
first EOFs explain 97, 93, and 89% of the variance in
the simulated regional anomalies for annually, seasonally,
and monthly averaged temperature throughout the ECHAM3
simulation, respectively. These figures indicate that the
scaled scenario approach provides a good approximation of
the climate change signal from the transient GCM experi-
ment. The spatial patterns for the other GCM experiments
had to be calculated from the climate differentials between
the final 30 year periods of the control integration and the
scenario integration because the complete model output re-
quired for an EOF analysis was not available.
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Figure 1. Climate change patterns depicting the changes in annual mean temperature and precipitation as simulated by three GCMs for the stabilized
climate after a doubling of the equivalent CO2 concentration. (a) ECHAM3, (b) ECHAM4, and (c) HadCM2.

We use the 1961–1990 mean climatology developed at
the University of East Anglia as the baseline climatology
[60]. Due to their huge data and/or computing demands,
the application of advanced downscaling techniques like
empirical–statistical models or nested climate models is
presently not feasible on the global scale [61,62]. Instead,
we applied inverse-distance interpolation to map the GCM
results onto the finer grid of the baseline climatology [63].
Figure 1 presents the climate change patterns for annual tem-
perature and precipitation. Simulated temperature anomalies
are specified in absolute terms whereas changes in precipita-
tion and cloud cover are expressed proportional to the base-
line value [64].

2.4. Climate impact response functions

The aim of our inverse impact analysis is to translate
constraints from the domain of climate change impacts into
the domain of climate variables (in a broad sense). It
is, however, not feasible to check for all possible climate
states whether they comply with a specific impact guard-
rail. We rather have to characterize plausible future climate
states by a few scalar variables that can be scanned effi-
ciently. A CIRF is defined as the dose–effect relationship be-
tween such fundamental drivers of global (climate) change
on the one hand and a suitable impact indicator on the other

hand. The development of CIRFs was inspired by an ear-
lier attempt to develop “ecological response functions” [65].
“Climate-response functions” have also been computed by
means of the global impact model (GIM). This model esti-
mates monetized impacts on various economic sectors based
upon annual average values for temperature and precipita-
tion at the country level [66].

The first input factor to the CIRFs presented here is the
(normalized) change in GMT. The description of future cli-
mate states by a single scalar variable leaves freedom for the
inclusion of other parameters, like the rate of climate change,
measures of climate variability, or socio-economic parame-
ters. For the CIRFs on vegetation impacts, CO2 concentra-
tion is used as the second input factor because of its great
relevance for the physiology of plants [67]. Although in-
creasing CO2 is the principal cause of global climate change,
the relationship between CO2 concentration and transient
changes in normalized GMT is not one-to-one due to the
thermal lag of the climate system and the influence of non-
CO2 greenhouse gases.

The relationship between the input factors and an impact
indicator can be denoted as

I = fp(�T̃ , CO2), (9)

where I is a (non-negative) impact indicator, fp(·) is the
CIRF, �T̃ is the normalized change in GMT compared to
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the baseline climate, and CO2 is the atmospheric CO2 con-
centration. The index p represents additional parameters that
may be varied in the course of a sensitivity analysis.

An inverse analysis involves the translation of an impact
constraint I � Imax into the corresponding climate window

f −1
p

([0 : Imax]
) ≡ {

(�T̃ , CO2)
∣∣ fp(�T̃ , CO2) � Imax

}
.

(10)
For a continuous CIRF, the climate window is fully deter-

mined by the impact isoline

f −1
p (Imax) ≡ {

(�T̃ , CO2)
∣∣ fp(�T̃ , CO2) = Imax

}
. (11)

The CIRFs presented in this paper were computed for
21 values of �T up to 1.6 × �T2×CO2, and for 18 levels
of CO2 between 325 and 1000 ppmv. Each function value at
one of those sampling points represents the aggregated out-
come of a global vegetation simulation on the 0.5◦ by 0.5◦
grid. The specified domain of the CIRFs is sufficiently large
as to include the time trajectories of the four SRES marker
emission scenarios [56] up to the year 2100. The CIRFs
themselves do, however, not depend on a particular emission
scenario.

2.5. Sensitivity analyses

Climate change and its impacts are still subject to signifi-
cant uncertainty. We evaluate the sensitivity of the simulated
vegetation impacts to the following factors.

Spatial aggregation of the impact indicator
We present both globally averaged and regionally explicit

results in this paper. The grid-based simulation of potential
vegetation by the BIOME model allows to aggregate impacts
up to virtually any world region. As default regionalization,
we use the biogeographic regions (syn. floral kingdoms) of
the world [68]. While biomes are defined with respect to
the functional properties of the vegetation, for instance, a
similar guild structure, biogeographic regions represent clus-
ters with respect to their taxonomic characteristics. Since
most concepts of biodiversity are based on taxonomic enti-
ties (i.e., species, genera, etc.), we regard it worthy to inves-
tigate clusters of them seperately.

Figure 2 provides basic information on the biogeographic
regions of the world. Although Capensis covers only parts
of the Republic of South Africa, this region is consistently
distinguished from Aethiopis due to the high degree of en-
demism in its flora. Its small size, however, makes Capensis
particularly sensitive to the effects of arbitrary local fluctua-
tions in GCM integrations. This scale mismatch lets us ab-
stain from a separate assessment of vegetation impacts in
Capensis. Greenland and Antarctis are precluded from the
analysis since they are predominantly covered by ice.

Spatial coverage of the impact assessment
In the default case, we focus the impact assessment on

protected areas. This is achieved by weighting the simula-
tion results for each grid cell with the extent of protected

Region Land area Protected area Agricultural area
[1000 km2] [%] [%]

Palaearctis 41580 3.5 20.3
Aethiopis 31550 6.6 5.4
Neotropis 19946 7.5 9.3
Neartctis 18645 6.2 16.5
Orientalis 8081 4.9 41.4
Australis 7464 4.4 4.7
Capensis 1208 2.0 12.4
Antarctis not considered here
World 128475 5.4 14.7

Figure 2. Biogeographic regions of the world. (Source: [68]; adopted with
kind permission from Urban & Fischer.)

Figure 3. Locations of protected areas. (Source: World Conservation Mon-
itoring Centre [69].)

areas therein according to the most recent version of the
UN List of Protected Areas [69] (see figure 3). Criteria for
the inclusion of a protected area in this list are its size (at
least 10 km2), its management objective (IUCN Categories I
to V), and the authority of the management agency (coun-
try or federal state level). Alternatively, the total land area
and the non-agricultural area [70] of a grid cell are used as
weighting factors.

Temporal resolution of the climate change patterns
In the default case, monthly climate change patterns

for near-surface temperature, precipitation and cloud cover
are superimposed onto the baseline climatology. Alterna-
tively, we evaluate the impacts for annually averaged climate
anomalies.

Source of the climate change projections
Climate change projections from three different GCMs

are used for the assessment of climate impacts on the distri-
bution of natural vegetation.
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Table 1
Simulated climate impacts on natural vegetation relative to the baseline period (1961–90) for the SRES A1 marker scenario. The climate data refers to

changes in annual near-surface temperature (�TMP), precipitation (�PRC), and cloud cover (�CLD).

ECHAM3 ECHAM3 ECHAM4 HadCM2
(annual anomalies) (monthly anomalies) (monthly anomalies) (monthly anomalies)

Equilibrium lclimate change for a doubling of the equivalent CO2 concentration
�T2×CO2 (global) 2.69 K 2.69 K 2.79 K 2.78 K
�TMP (land area) 3.70 K 3.70 K 4.39 K 3.94 K
�PRC (land area) +8% +8% +6% +4%
�CLD (land area) −2% −2% +1% −1%

Biome change simulated for the climate of the year 2100†

(left: total land area; right: protected areas)
Global average 39.1% 39.1% 38.4% 37.1% 38.7% 39.0% 35.1% 33.9%

Maximum change 52.7% 60.8% 50.8% 57.3% 52.0% 65.3% 53.7% 62.3%
in a region Nearctis Nearctis Nearctis Palaearctis Nearctis Nearctis Nearctis Nearctis

Minimum change 28.9% 23.5% 27.6% 22.7% 20.7% 12.7% 19.2% 14.9%
in a region Aethiopis Neotropis Aethiopis Neotropis Australis Australis Aethiopis Aethiopis

Decade when global guard-rail for biome change is exceeded
10% change 2010s 2010s 2010s 2010s 2010s 2010s 2010s 2020s
20% change 2030s 2030s 2030s 2040s 2030s 2040s 2040s 2040s
30% change 2060s 2060s 2060s 2060s 2060s 2060s 2070s 2070s

Decade when regional guard-rail for biome change is exceeded
20% change 2030s 2020s 2030s 2020s 2020s 2020s 2030s 2030s

Australis Palaearctis Palaearctis Palaearctis Palaearctis Palaearctis Nearctis Palaearctis
50% change 2090s 2070s 2090s 2070s 2090s 2060s 2080s 2070s

Nearctis Nearctis Nearctis Palaearctis Nearctis Palaearctis Nearctis Nearctis

†For the SRES A1 marker scenario, we calculated �T̃ (2100) = 1.00 and CO2(2100) = 690 ppmv. The amount of climate change in the year 2100 thus
corresponds to the figures stated above for a doubling of the equivalent CO2 concentration.

3. Results

In this section, we present the main results of our mod-
elling exercise. We first describe the simulated impacts of
climate change on natural vegetation for the default settings,
both in the forward (‘scenario’) and inverse (‘guard-rail’)
mode. Subsequently, we present the implications of vari-
ous sensitivity tests for the CIRFs and the admissible climate
windows derived from them.

In the text, we will mostly deal with qualitative aspects
of the results whereas quantitative results are presented by
means of various impact diagrams. Three types of impact
diagrams are used to visualize different aspects of the simu-
lated vegetation impacts, namely biome balance diagrams,
response surface diagrams, and impact isoline diagrams.
A detailed explanation upon their first use will guide the
reader through the diagrams. Due to space limitations, not
all qualitative results mentioned in the text can be supported
by corresponding impact diagrams.

3.1. Results for specific climate scenarios

Table 1 presents characteristic features of the climate pro-
jections from three different GCMs for the SRES A1 marker
emission scenario as well as the respective vegetation im-
pacts. The results for the global extent of biome change be-
tween the baseline climate and the climate of the year 2100
are robust across GCMs, and they correspond well for the to-
tal land area and for protected areas. Another robust feature

in all simulations is that high-latitude regions (i.e., Nearc-
tis and Palaearctis) are highly sensitive whereas low-latitude
regions (e.g., Aethiopis) are comparatively insensitive. Re-
gional variations in the sensitivity of the vegetation are con-
sistently more pronounced for protected areas than for the
total land area.

Figure 4 depicts changes in the global extent of biomes
between the baseline period and a future point in time in
the form of a biome balance diagram. The climate for the
year 2100 of the SRES A1 marker scenario is determined
by (monthly) climate anomalies from three different GCM
experiments. For each biome, the potential area in the base-
line climate, the stable area (lower bar), and the total area
(upper bar) in equilibrium with the future climate are pre-
sented. The difference between the two latter values denotes
the newly suitable area of a biome.

The simulated responses differ widely between biomes.
The extent of tropical woodland, for instance, almost dou-
bles after complete adaptation to the changed climate, trop-
ical evergreen forest remains largely unaffected, and tundra
is predicted to lose about two-thirds of its present area with-
out significant gains elsewhere. Cool conifer forest shows
an ambiguous response. Its potential area increases consid-
erably, yet none of the present locations of this biome is sim-
ulated to remain climatically suitable in 2100.

The simulations for the ECHAM4 and HadCM2 patterns
yield more cool mixed forest and hot desert, but less steppe
and tropical evergreen forest than for ECHAM3. The dif-
ferences are moderate and, with the exception of tropical
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Figure 4. Biome balance diagram for globally averaged changes in potential vegetation between the baseline climate and the climate state simulated by
three GCMs for the year 2100 of the SRES A1 marker scenario. ⊥: stable area resp. �: total area of each biome in equilibrium with the changed climate.

evergreen forest, there is an agreement on the sign of the
projected changes in the total area of each biome.

Whereas biome balance diagrams provide detailed infor-
mation on the simulated vegetation impacts for one future
climate state, they are not suitable for inverse analyses of
climate change impacts. For this purpose, we developed two
alternative diagram types that will be presented in the fol-
lowing section.

3.2. Scenario-independent results

Figure 5 shows the globally averaged response of vegeta-
tion in protected areas to changes in GMT and atmospheric
CO2 in a scenario-independent form.

The response surface diagram in figure 5(a) depicts the
dose–effect relationship between the two input variables of
the CIRF (on the horizontal axes) and the chosen impact in-
dicator (on the vertical axis). The baseline climate is repre-
sented by the bottom left corner of the RSD. In geographical
terms, the diagram corresponds to a landscape model that
states the ‘height’ of an impact for every ‘location’ in the
climate domain. On the global scale, the relationship be-
tween each input factor and the impact indicator is monoto-
nously increasing and rather smooth. The combined effect
of changes in both forcing variables is generally larger than
the effect of each input factor but less than additive. The
coloured isolines connect points on the response surface for
which the simulted impacts are equal. In the present ex-
ample, they correspond to exemplary impact guard-rails that

limit the loss of the current biome to 10%, . . . , 50% of pro-
tected areas worldwide. The isolines are drawn both on the
response surface itself and on the base surface.

A RSD provides an intuitively understandable picture of
a CIRF. Due to their 3-dimensional nature, however, RSDs
are not well suited for inverse applications.

The impact isoline diagram (IID) in figure 5(b) shows the
projection of isolines from the RSD in figure 5(a) onto the
domain of the CIRF. In geographical terms, an IID corre-
sponds to a topographical map with contour lines. Climate
change is measured both in terms of the absolute change
in GMT (below the diagram) and the normalized change
in GMT (above the diagram). We also denote the annual
mean values of all considered climate variables within the
respective region for the baseline climate and for the end-
point of the climate domain. In order to relate the isolines
to potential future climate states, we depict the climate tra-
jectories computed by the IRF climate model for the four
SRES marker scenarios and for an additional climate stabi-
lization scenario proposed by the German Advisory Council
on Global Change [71]. The trajectories start in the bottom
left corner of the diagram which represents the climate of
the baseline period 1961–1990. Their evolution is denoted
in decadal steps until 2100. The ‘30% guard-rail’ is, for in-
stance, violated by the SRES A1 scenario around 2070.

An IID provides a condensed picture of a CIRF in a
2-dimensional diagram. Since IIDs enable the immediate
translation of impact constraints into corresponding climate
windows, they are particularly suitable for inverse analyses.
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Figure 5. Impact diagrams depicting the percentage of the world’s protected
areas where the current biome is no longer viable for a range of changes in
climate (scaled by the change in global mean temperature) and CO2 con-
centration. (a) Response surface diagram. (b) Impact isoline diagram. The
climate states reached during the SRES marker scenarios and an additional
climate stabilization scenario are depicted in decadal steps from 1970 (bot-

tom left corner) to 2100.

3.3. Regionally specific results

The genetic pools of different biogeographic regions are
quite distinct. Merely imposing constraints on globally av-
eraged vegetation impacts is thus likely to be insufficient for
the preservation of biodiversity. Therefore, we also deter-
mined climate windows based on constraints for regional
vegetation change. Selected results are presented in figures 6
and 7.

Figure 6 shows the climate windows for an exemplary im-
pact guard-rail (20% change) in each biogeographic region
(coloured isolines) and on the global level (dashed isoline).
In high–latitude regions (i.e., Nearctis and Palaearctis), the
extent of biome change is typically above the global average
(cf. also table 1), and the changing climate is the dominant
driver. Biome change in protected areas of Nearctis, for in-
stance, amounts to 50–60% for the changes in climate pro-
jected for the year 2100 of the SRES A1 marker scenario,
and to less than 10% for the respective CO2 change (fig-
ure 7(a)). CO2 increase is an important driver for vegetation

Figure 6. Isoline diagram for biome change in each biogeographic region
and on the global level. The guard-rail refers to a change in 20% of the

protected area in the respective region.

Figure 7. Isoline diagrams for biome change in protected areas of (a) Nearc-
tis and (b) Australis.
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change in water-limited regions though. Biome change in
protected areas of Australis for the same scenario amounts
to 30–40% for changes in CO2, and to less than 10% for the
respective climate change (figure 7(b)). Because of the con-
siderable regional differences in the sensitivity of the vege-
tation, climate windows become much more restrictive if the
impact constraint refers to each region individually instead
of the global average.

3.4. Results for individual biomes

It was already shown in figure 4 that the simulated vegeta-
tion responses to changes in climate and CO2 concentration
differ widely across biomes. Figure 8 presents climate win-
dows for a 20% decrease in the stable area (figure 8(a)) and
the total area (figure 8(b)) of each biome, respectively. Only
those biomes are shown where this guard-rail is exceeded
within the domain of the CIRF. Predominantly temperature-
limited biomes (like wooded tundra, cool conifer forest and
tundra) are almost exclusively sensitive to changes in cli-

Figure 8. Isoline diagrams for individual biomes. The guard-rail refers to
a 20% decrease in the global potential area of each biome (a) without and

(b) with accounting for newly suitable regions.

mate variables. These biomes are also the most sensitive
ones to climatic changes across all GCM projections. Water-
limited biomes (like savanna, scrubland and hot desert) re-
spond strongly to CO2 changes. The lowest sensitivity to cli-
matic changes is simulated for tropical woodland and tropi-
cal evergreen forest.

3.5. Sensitivity to the spatial coverage of the impact
assessment

We simulated all vegetation impacts for the protected
area, the non-agricultural land area and the total land area
in a region. At the global level, there is no significant dif-
ference in the results for any of the GCM projections (see
table 1). The picture changes somewhat at the level of in-
dividual biogeographic regions. On the one hand, protected
areas in Orientalis and Neotropis are simulated to be less
sensitive to changes in climate and CO2 concentration than
the total land area for three respectively two out of three
GCM projections. On the other hand, Nearctis and Palaearc-
tis show more pronounced vegetation changes in protected
areas than on average for all GCM patterns. This observa-
tion can be explained by the spatial distribution of protected
areas within the respective biogeographic regions.

3.6. Sensitivity to the temporal resolution of the climate
change patterns

In most regions, simulated vegetation impacts were
broadly comparable for monthly and for annually averaged
climate change patterns from ECHAM3. The most notice-
able exception concerns Australis where vegetation change
is less pronounced for seasonally explicit climate anomalies
than for annually averaged ones. The major climatic stress
for the vegetation in most parts of Australis is low water
availability in summer. Since the simulated warming is low-
est and the precipitation increase is strongest in that season,
scrubland remains suitable after the imposition of season-
ally explicit climate anomalies in some regions where it is
replaced by the more drought–tolerant steppe after the im-
position of annually averaged climate anomalies.

A similar seasonal signal of climate change, essentially
characterized by a stronger warming in winter, causes oppo-
site results in Palaearctis. Because vegetation productivity
in Palaearctis is predominantly limited by low winter tem-
peratures, seasonally explicit climate anomalies induce more
widespread vegetation changes than annually averaged ones.

3.7. Sensitivity to the source of the climate change
projection

Figure 9 depicts characteristic IIDs based on climate
change patterns from ECHAM4 and HadCM2. In gen-
eral, the simulated vegetation impacts differ less between
ECHAM4 and HadCM2 than between ECHAM3 and either
of the other GCMs.

Figure 9(a) shows that global vegetation responds signifi-
cantly stronger to climate change projections from ECHAM4



H.-M. Füssel, J.G. van Minnen / Climate impact response functions for terrestrial ecosystems 193

Figure 9. Characteristic vegetation impacts for climate change patterns from ECHAM4 (left) and HadCM2 (right). For a legend and comparable results
based on ECHAM3 patterns, see (a) figure 5(b), (b) figure 6, and (c) figure 7(b).
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and HadCM2 than to those from ECHAM3 (figure 5(b)) for
constant CO2 concentrations. This observation can be partly
explained by the slightly lower continental warming simu-
lated by the latter GCM (see table 1). For more plausible
scenarios, comprising changes in both climate and CO2 con-
centration, the differences are rather small.

Figure 9(b) depicts impact isolines for all biogeographic
regions. Compared to ECHAM3 (figure 6), vegetation re-
sponds more sensitive to climate anomalies from ECHAM4
and HadCM2 in Neotropis and Orientalis, and less sensitive
in Australis and Aethiopis. In Palaearctis and Nearctis, veg-
etation impacts based on climate projections from ECHAM3
and ECHAM4 agree well whereas the response is weaker for
the HadCM2 projections.

Disagreement between different GCM projections is
strongest for Australis. The main reason are large uncertain-
ties in the precipitation projection for this region. The higher
water-use efficiency of plants associated with enhanced CO2
levels partly compensates for the effects of decreasing pre-
cipitation as simulated by ECHAM4 and HadCM2. Veg-
etation impacts throughout the SRES marker scenarios for
combined changes in climate and CO2 are therefore smaller
than those of changes in climate or CO2 alone (figure 9(b)).
Such a compensation effect does not occur for ECHAM3
(figure 7(b)) which projects an increase in precipitation.

4. Summary and conclusions

In this paper, we introduced climate impact response
functions (CIRFs) as a convenient method for summariz-
ing and visualizing the impacts of climate-sensitive sec-
tors to changes in fundamental climatic, and possibly other,
drivers. CIRFs are particularly suitable for inverse calcula-
tions, i.e., for translating impact guard-rails into ‘tolerable’
climate windows. Furthermore, CIRFs can be applied for
assessing regional sensitivities to climatic changes, and to
compare the importance of different input factors. In the
ICLIPS model, an integrated assessment model of climate
change (IAM) based on the guard-rail approach, CIRFs al-
low the normative specification of minimum requirements
for climate protection strategies with respect to the actual
impacts of climate change instead of crude proxy variables,
like the change in global mean temperature.

We demonstrated the feasibility of the method by assess-
ing the response of natural vegetation to changes in climate
and atmospheric CO2 concentration. The respective impact
indicators include the percentage loss of current protected
areas and the fractional loss of individual biomes. The latter
was evaluated with and without accounting for newly suit-
able locations. Since we focussed our assessment on ar-
eas that are legally protected in their present state, processes
like land-use change and the migration of ecosystems were
of minor relevance here. Considering the limitations of an
intertemporally optimizing global IAM such as the ICLIPS
model, we regard these indicators as both comprehensible
and relevant to stakeholders.

The BIOME 1 model, as adapted for IMAGE 2.1 to in-
clude the effects of enhanced CO2 levels, was used to sim-
ulate the potential vegetation distribution under current and
changed climate conditions. BIOME 1 simulates long-term
changes in the global vegetation distribution that are in good
agreement with more complex dynamic vegetation models,
and it is computationally efficient.

Limits for vegetation impacts were translated into corre-
sponding climate windows that are specified in terms of the
change in global mean temperature and atmospheric CO2.
Spatial and seasonal variations in the climate change sig-
nal as simulated by transient GCM experiments were con-
sistently taken into account by using a scaled scenario ap-
proach.

The most extensive vegetation changes were simulated
for the high-latitude biomes wooded tundra, cool conifer for-
est, and tundra where low temperatures are the prime limit-
ing factor for vegetation growth. The distribution of water-
restricted biomes like savanna and scrubland was more
strongly affected by increasing CO2 due to its effect on
the water-use efficiency of plants. Current areas of tropi-
cal woodland and tropical evergreen forest responded least
sensitive to anticipated climatic changes. In regions with
significant precipitation decreases, the effects of changes in
climate and CO2 were simulated to partly compensate.

We also evaluated the relevance of various assumptions
and parameterisations. The vegetation response in protected
areas and in the entire land area was comparable at the global
level, yet significant differences occurred at the level of bio-
geographic regions. Simulated impacts for seasonally ex-
plicit and annually averaged climate change fields deviated
markedly in some regions with a strong seasonal signal in the
projected climate anomalies. This argues for climate impact
assessments to consider seasonal variations not only in the
baseline climatology but also in the climate change signal.

We performed all vegetation simulations for climate pro-
jections from three coupled GCMs (ECHAM3, ECHAM4,
and HadCM2). These GCM integrations exhibit a compara-
ble climate sensitivity yet their climate change patterns differ
considerably. While the vegetation impacts across GCMs
agreed well at the global level, significant variations were
simulated for some regions. The disagreement was strongest
in predominantly water-limited, subtropical regions because
variations across GCM projections were greater for precipi-
tation than for temperature.

Certain limitations of the present research exist. Firstly,
BIOME 1 neither simulates the vegetation dynamics under
the influence of transient climate change and major distur-
bances, nor does it provide quantitative indicators on the
productivity and the carbon dynamics of ecosystems. We
therefore selected impact indicators that do not rely on such
information. The evaluation of dynamic vegetation models
for their applicability in inverse-calculation approaches re-
mains an important topic for future research.

Secondly, simulated biome change is a somewhat coarse
indicator for the threat to a protected area. On the one hand,
there exist protected areas where the local climate conditions
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are inadequately described by the global baseline climatol-
ogy due to its coarse spatial resolution, or where the preser-
vation of potential natural vegetation is not the primary pro-
tection goal. On the other hand, many species in regions
with high biodiversity have a small niche volume and are
thus more sensitive to climatic change than the biome as a
whole. Balancing these arguments, we consider the simu-
lated amount of biome change a low estimate for the threat
to terrestrial ecosystems by climatic change.

Finally, the current protected areas do not represent an
unbiased sample of global ecosystems, and they are not al-
ways located in the centres of biodiversity and endemicity.
The legal protection of an area in its current state is, never-
theless, the best information available on the valuation of its
ecological features by societies.

To summarize, CIRFs are a valuable means for the aggre-
gated representation of global and regional impacts of cli-
mate change for a wide range of future scenarios. They are
particularly useful in IAMs based on inverse or optimizing
approaches, such as the ICLIPS model, where the on-line
simulation of climate impacts by sophisticated models is of-
ten infeasible due to their high computational demand.
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