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ABSTRACT

After posing four-broad questions about uncertainty and climate change, Part 1 of this paper provides a review of basic ideas about

uncertainty and its treatment in quantitative policy analysis. Part 2 reports very briefly on a series of expert elicitations of climate

experts which the author and his colleagues have conducted. The final portion of the paper uses integrated assessment of climate

change as a vehicle to explore some limitations to conventional policy analysis and the treatment of uncertainty. Because the climate

problem is global in scope, involving many societies, and because it will involve large changes that unfold on a time-scale of several

centuries, many standard analytic methods for policy analysis cannot be appropriately applied. Several such difficulties are identified

and explored. Strategies for addressing a few of them are discussed. The paper closes by offering answers to the four opening

questions.
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1. SOME QUESTIONS

We begin with a deceptively simple question:

What is the role of uncertainty in the assessment of future

climate change and its likely ecological, social and

economic implications?

Many participants in the discussion of climate change are of

two minds when they try to answer.

We can frame the climate change integrated assessment

problem as that of providing accurate solutions to a set of

coupled models such as those illustrated in Figure 1. At least

some who adopt this framing also argue that significant

policy interventions are not warranted until we can obtain

accurate predictive solutions to such models. We might term

this . . . the ‘‘rational social decision making’’ formulation of

the climate problem. To those of us who come from

technical backgrounds, this formulation – ‘‘first figure out

how the system works, and only then take action’’ – has

some clear appeal. However, I believe that we would be hard

pressed to find examples of any major human decisions

which have been actually made this way. Decision to go to

war, sue for peace, found a city, create a company, get

married, start a family, or emigrate to another land, have

always involved a leap of faith based on fragmentary

information.

In decision-analytic terms, the formulation ‘‘no action

before clear and complete knowledge (i.e., avoid false

positives at all costs),’’ may be fine as the first-order criterion

to choose which papers to publish in peer-reviewed scientific

journals. However, it carries the implicit assumption that the

costs of taking no action are small. In many fields of public

decision making – such as national security, public health,

and environmental protection – that may not be a safe

assumption.

Which brings us to a second perspective. If we conclude

that there is enough evidence now about human impacts on

climate to suggest a reasonable basis for concern, and we

believe that there is no way that we will be able to adequately

understand and model the set of coupled processes displayed

in Figure 1 (at least on the time-scale of the geophysical

experiment we are currently running), then the climate

problem is fundamentally a problem of: (1) producing a

shared conviction among the peoples and leaders of the large

industrialized and industrializing nations that anticipatory

actions are needed; and (2) devising robust adaptive

strategies for dealing with an inherently uncertain future. I

adopt this latter view.

1This paper draws liberally upon several of the author’s earlier writings including [1–7].
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Thus, in considering uncertainty in the case of climate

assessment, I believe we should focus primarily on four

questions:

1. How can we use uncertainty analysis, bounding analysis,

and similar methods, to limit the range of possible

‘‘answers’’ even if perfect understanding and predictive

capability cannot be achieved over the next few decades?
2. How can we develop a clearer indication of what we can

expect to know, and what we will probably not be able to

know, about climate change and its likely impacts on the

time-scale of the next few decades?
3. How can we use scientific knowledge and policy analysis

to develop strategies for social and individual behavior

and choice that are likely to be robust in an inherently

uncertain world?
4. As we elaborate our characterization of uncertainty, and

what we cannot expect to know, how can we do it in such

a way as not to provide aid to those who argue that no

action is warranted until all uncertainties have been

resolved?

I will return to these four questions to offer my personal

‘‘answers’’ at the end of this paper.

2. BASIC IDEAS ABOUT UNCERTAINTY

Uncertainty is an integral part of most large problems in

science, technology and public policy, of which climate

change is a prime example. The quantitative characterization

and treatment of uncertainty has been a central preoccupa-

tion of the fields of decision and risk analysis since their

inception. Raiffa and Schlaifer [8], Howard and Matheson

[9], Rasmussen and colleagues (USNUREG, 1975) [10],

Keeney [11], von Winterfeldt and Edwards [12], Morgan and

Henrion [13], Evans et al. [14], Pat�ee-Cornell [15], Callahan

[16] and many others have contributed to the systematic

exploration of the problems involved. They have created a

solid theoretical framework for addressing uncertainty and

have developed and demonstrated a range of practical tools

for its characterization, and its incorporation into quantita-

tive risk and other types of policy analysis.

Most of this literature is focused on how to characterize and

analyze uncertainty about the value of specific coefficients that

arise within a model or the value of input variables to that

model. Here are two climate-related examples:

� Climate sensitivity – If we double the concentration of

carbon dioxide in the earth’s atmosphere, how much will

the average temperature of the earth increase?
� Future energy prices – What will be the bus-bar price of

electricity from conventional coal fired power plants in

Western Pennsylvania in January of 2020?

Morgan and Henrion [13] provide a classification of a variety

of sources of such coefficient or parameter uncertainty, and

discuss how each should appropriately be described and

analyzed.

The standard way to describe such uncertainty is with a

probability density function (PDF) or its integral, the

cumulative distribution function (CDF). This can be done

using a frequentist approach when adequate data are

available. More typically, data are incomplete, and it is

necessary to seek the considered judgment of experts using a

subjectivist approach in which probability distributions

become statements of ‘‘degree of belief.’’ In Part 2, I discuss

the problem of eliciting full subjective probabilistic judg-

ments from experts and present several climate-specific

examples,

The use of quantitative statements of uncertainty has a

number of clear advantages. However, there remain people

who argue that it is sufficient, or even preferable [17], to

describe uncertainty in terms of ‘‘probability words’’ (e.g.,

words such as ‘‘likely’’ and ‘‘unlikely’’). Typically the folks

who advance such arguments also adopt a ‘‘frequentist’’

perspective on probability, rejecting Bayesian ‘‘subjectivist’’

interpretations of probability as a statement about degree of

belief [13].

Qualitative language used without at least some quanti-

fication is inadequate because: (1) the same words can mean

very different things to different people; (2) the same words

can mean very different things to the same person in

different contexts; (3) important differences in experts’

judgments about mechanisms (functional relationships), and

about how well key coefficients are known, can be easily

masked in qualitative discussions.

Figure 2, which summarizes work by Wallsten et al. [18],

illustrates the range of meaning that common probability

words can take on for different individuals, absent any

specific problem context. Note the enormous ranges

associated with some words and phrases such as ‘‘good

chance’’ and ‘‘possible,’’ and the large variation in the

interpretation of the words by different subjects, and the

significant overlap between a number of words.

Fig. 1. The problem of integrated assessment of the climate problem is

sometimes framed as the problem of providing accurate solutions to

a set of coupled models such as these.
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To illustrate the problem more specifically, in 1997 I

asked the members of the Executive Committee of the EPA

Science Advisory Board to give me their quantitative

interpretations of some of the words being proposed for

use in EPA’s new cancer guidelines [19]. Specifically I asked

them to indicate what range of numerical probabilities they

would assign to ‘‘likely,’’ ‘‘not likely’’ and to ‘‘something in

between likely and not likely’’ [5]. Figure 3 summarizes the

responses I received. Note that, even in this relatively small

and expert group, the minimum probability associated with

the word ‘‘likely’’ spans four orders of magnitude, and that

the maximum probability associated with the word ‘‘not

likely’’ spans more than five orders of magnitude. Indeed,

even in this small sample, there is an actual overlap of the

probability associated with the word ‘‘likely’’ and that

associated with the word ‘‘unlikely!’’

Clearly, without at least some quantification, such

qualitative descriptions of uncertainty convey little, if any,

useful information. The climate assessment community

appears to be well along in learning this lesson. Moss and

Schneider [20] have worked to get a better treatment of

uncertainty incorporated in the current round of IPCC.

Progress is uneven, but awareness is growing. In the

summary for policy makers recently released by IPCC WG

1 we read:

. . . the following words have been used . . . to indicate

judgmental estimates of confidence: virtually certain

(greater than 99% chance that the result is true); very

likely (90–99% chance); likely (66–90%); medium

likelihood (33–66%); unlikely (10–33% chance); very

unlikely (1–10% chance); exceptionally unlikely (less

than 1% chance) . . .

Fig. 2. Range of quantitative values that Wallsten et al. [18] found that

people associate with common probability words absent any

specific problem context. Note the enormous ranges associated

with some words and phrases such as ‘‘good chance’’ and

‘‘possible,’’ the large variation in the interpretation of the words

by different subjects, and the significant overlap between a number

of words.

 

  

 
 

 

 

Fig. 3. Results obtained when members of the executive committee of the US

EPA Science Advisory Board were asked to assign quantitative values

to the probability words ‘‘likely,’’ ‘‘not likely’’ and to ‘‘something in

between likely and not likely’’ in the context of the possible

carcinogenicity of chemicals [5]. Note that, even in this relatively

small and expert group, the minimum probability associated with the

word ‘‘likely’’ spans four orders of magnitude, and that the maximum

probability associated with the word ‘‘not likely’’ spans more than five

orders of magnitude. Indeed, even in this small sample, there is an

actual overlap of the probability associated with the word ‘‘likely’’ and

that associated with the word ‘‘unlikely.’’ Note that two respondents

provided only point values, not ranges.
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There is also a notably increased focus on discussions of

uncertainty, and on including uncertainty in graphical

results. The US National Assessment Synthesis Team [21]

also gave quantitative definitions to five probability words

and tried to use them consistently throughout their overview

report.

A second, often more important type of uncertainty, is

uncertainty about model form. By this I mean uncertainty

about how the physical, biological and social world works.

Here again we can illustrate with two climate related

examples:

� Amount and distribution of precipitation – If the climate

warms as a result of doubling the atmospheric concentra-

tion of CO2, which physical processes will control the

amount of precipitation at middle latitudes? Will the

result be an increase or a decrease?
� Predicting Chinese climate policy – In selecting a climate

policy in the latter part of the century, will China choose

the one that gives the best expected net present value, the

one that gives the lowest maximum possible loss, or some

other option?

Model uncertainties can arise because: (1) we don’t know

the basic science that underlies the processes being modeled;

(2) the processes involved are sufficiently complex that we

are unable to model their behavior from first principles, and

do not have enough information to confidently build

macroscopic models; (3) the system is changing in unknown

ways over time. Examples of this last include multiple

states (not all states understood, or transition rules between

states not understood); structural change; statistical non-

stationary; and chaotic behavior.

There are a variety of strategies that can be used to deal

with model uncertainty. If you can spell out all the

alternative possible model forms then you can analyze each

separately, and combine the results (Fig. 4a). If you can’t

assess the probabilities, you can at least try to bound the

range of possible outcomes. Similarly, if you cannot spell out

all the possible models you may still be able to bound the

range of outcomes with order-of-magnitude or similar

methods (Fig. 4b).

Until recently there had been little practical progress in

dealing with model uncertainty, but now there are several

Fig. 4. There are a variety of strategies that can be used to deal with model uncertainty. If you can spell out all the alternative possible model forms, then you

can analyze each separately, and combine the results (A, above). If you can’t assess the probabilities, you can at least try to bound the range of

possible outcomes. Similarly, if you cannot spell out all the possible models, you may still be able to bound the range of outcomes with order-of-

magnitude or similar methods (B, below).
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examples of serious applied efforts. John Evans and his

colleagues at the Harvard School of Public Health [14] have

performed a series of analyses to explore the possible

mechanisms that underlie the toxicity of environmental

pollutants. Alan Cornell and others have explored model

uncertainty in the context of seismic risk [22]. Hadi

Dowlatabadi and I, along with several colleagues at

Carnegie Mellon, have worked to incorporate model

uncertainty into an integrated assessment of climate change

[6]. I will return to this work in Part 4.

3. CLIMATE-RELATED EXAMPLES

OF EXPERT ELICITATION

Eliciting full subjective probabilistic judgments requires

careful preparation and execution. Developing and testing an

appropriate interview protocol typically takes several

months. For any moderately detailed topic, each interview

is likely to require several hours. When addressing complex,

scientifically subtle questions of the sorts involved in climate

change and impact assessment, there are no satisfactory

short cuts. Attempts to simplify and speed up the process

almost always lead to shoddy results due to factors such as:

(1) imprecisely specified questions; (2) inadequate attention

to overconfidence; or (3) inadequate attention to other effects

of cognitive heuristics such as ‘‘availability,’’ ‘‘anchoring

and adjustment’’ and ‘‘representativeness’’ [23].

Developing a precise question can often be more complex

than one might think. For example the price of gas in 2010 is

not a precise definition of an uncertain variable. Are we

talking regular or high octane, wholesale or retail, in the US

or Netherlands? If in the US, what state? What time of year?
And so on.

There is a large literature, summarized in [13], which

clearly demonstrates that both ordinary people and experts

are systematically overconfident about the precision with

which they know the things they know. This can have the

impact of producing elicited distributions which are much

narrower than they should be.

When ordinary people or experts make judgments about

uncertain events, such as numbers of deaths from chance

events, they use simple mental rules of thumb called

‘‘cognitive heuristics.’’ In many day-to-day circumstances,

these serve us very well, but in some instances they can

lead to bias – such as over confidence – in the judgments

we make. This can be a problem for laypeople and for

experts. Space limitations preclude a discussion here of these

issues. A good general introduction can be found in [29].

Details, as they apply to expert elicitation can be found in

[13].

Since 1994 my colleagues and I have conducted two

large-scale projects of expert elicitations [1, 7]. Others who

conducted (much simpler) elicitations include NDU [25],

Stewart and Glantz [26] and Nordhaus [27].

Figure 5 provides an illustration of one of the results from

our elicitation of climate scientists. Additional results from

our elicitations with climate scientists, as well as some

results from our elicitation of forest ecosystem experts are

available in [1, 7].

4. UNCERTAINTY IN THE ASSESSMENT

OF THE CLIMATE PROBLEM

We turn now to a discussion of the treatment of uncertainty

in the assessment of climate change. The past three decades

have witnessed an explosive growth in the development and

use of tools for quantitative policy analysis, among which

have been tools for the characterization and treatment of

uncertainty [13]. As policy analysts have turned to the

consideration of climate and other problems of global

change, they have found it natural to employ these standard

tools without modification. However, many issues in global

change involve temporal, spatial and socio-political scales

that are significantly broader than those encountered in

most traditional policy analyses. In such cases, the un-

critical application of conventional tools can violate the

assumptions on which they are based, produce silly or

misleading findings [4].

Fig. 5. Box plots of elicited probability distributions of climate sensitivity,

the change in globally averaged surface temperature for a 2�[CO2]

forcing. Horizontal line denotes range from minimum to maximum

assessed possible values. Vertical tick marks indicate locations of

lower 5 and upper 95 percentiles. Box indicates interval spanned by

50% confidence interval. Solid dot is the mean and open dot is the

median. The two columns of numbers on right-hand side of the

figure report values of mean and standard deviation of the dis-

tributions. From [7].
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The source of difficulty is illustrated in Figure 6. Most

tools of modern quantitative policy analysis were developed

to address problems that lie near the origin in this space. As

one moves outward from the origin, more and more of the

underlying assumptions upon which conventional tools are

based begin to break down. Because many problems in

global change lie far from the origin on all three dimensions,

one can expect that the straightforward application of

standard ideas and methods will often fail.

In other writings [4] my colleagues and I have argued that

among the standard assumptions that are problematic are: (1)

the assumption that there is a single public-sector decision

maker who faces a single problem in the context of a single

polity; (2) the assumption that the impacts involved are of

manageable size and can be valued at the margin; (3) the

assumption that values that are known, static, and exoge-

nously determined, and that the decision maker should select

a policy by maximizing expected utility; (4) the assumption

that time preference is accurately described by conventional

exponential discounting of future costs and benefits; (5) the

assumption that uncertainty is modest and manageable; and

(6) the assumption that for most questions of interest, the

system under study can reasonably be treated as linear. Of

course, not all conventional policy analysis makes all these

assumptions, nor are all problems that lie near the origin in

Figure 6 amenable to solution with analytical tools that make

such assumptions.

Here we focus just on problems that arise in the

characterization and treatment of uncertainty. We have very

different levels of understanding of the various processes

that determine: (1) human and natural emissions of

radiatively important gases and particles; (2) climate system

response to radiative forcing; (3) human and natural

response to climate change. In some cases, we understand

processes well enough, and=or time constants are slow

enough, that we can safely model or extrapolate for

centuries. But, in many cases, particularly those involving

human or ecosystem responses, we do not understand

processes well enough, and change can happen so quickly,

that our ability to model or extrapolate is very limited.

Over the past several years, Dowlatabadi, Morgan and co-

workers built a large stochastic simulation model called

ICAM (for Integrated Climate Assessment Model) in the

Analyticatm software environment (formerly Demos). This

environment provides a powerful graphic user interface

which represents the model structure in the form of

hierarchically organized influence diagrams. Users can

explore the model by ‘‘double clicking’’ on various

elements, moving down through the model hierarchy until

they reach individual model elements, where they can

observe the mathematical relationships between variables

and read documentation on some of the values being used

and the assumptions that have been made. Users can easily

substitute alternative values or probability distributions. The

model is available at http:==www.hdgc.epp.cmu.edu. A

demonstration copy of the Analyticatm software can be

obtained at http:==www.lumina.com=software.

In the current version of ICAM, the world is divided into

twelve regions. Time is stepped in five-year increments from

1975 to 2100. Demographic and economic processes lead to

Fig. 6. Policy problems can be placed in this space and their location used to evaluate the appropriateness of applying various policy analysis tools. For any

particular policy problem the axes indicate the amount of resources required or at stake; the time-scale, both to implement and to reverse the effects of

the choices available; and the degree of political and cultural homogeneity of the people involved. Most tools of modern policy analysis work best

when the problem lies near the origin in this space. As one moves outward from the origin, more and more of the underlying assumptions on which

these tools are based break down. Many problems of global change lie far from the origin on all three axes. Global change issues may involve very

large costs, are often characterized by long temporal scales and associated intergenerational equity issues, and may involve a large political and

cultural distance between many different parties, and an associated lack of shared metrics. From [4].
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emissions of greenhouse gases and aerosols. These modify

the composition of the atmosphere, and bring about climate

change. Climate change leads to various impacts which in

turn can affect demographic, socio-economic and ecological

processes. It is possible to make policy interventions in

energy use, in emissions management, and in adapting to

impacts. In some user-selected structural variants of ICAM,

economic factors, climate change, and climate impacts can

influence the initiation and path of these interventions.

In developing ICAM, we found that uncertainty about the

appropriate functional form of different sub-models is

sufficiently large, and the difficulty of constructing all

plausible alternatives sufficiently great, that it is often best to

report results parametrically across a set of combinations of

different model structural assumptions, in much the same

way that one reports the results of parametric sensitivity

studies of coefficient uncertainty. For example, in an

application of ICAM-2 designed to explore the probability

that a specific carbon tax policy would yield net positive

benefits, we found that the probability ranged from 0.15 to

0.95 for the world as a whole, depending upon the structural

assumptions made. A more recent example, from a study

[29] conducted of the costs of delaying mitigation activities,

illustrates the effects of alternative model structures in just

the energy and carbon emission control modules of ICAM-3,

Table 1.

Many climate policy models are designed and solved as

long-term optimization problems. In a setting with uncer-

tainties as great as those displayed in Table 1, we doubt the

utility of conventional optimization formulations. As an

alternative, rather than try to search for the optimal policy,

we have set out to search for robust behaviors. Just as in the

model environment, real world policy makers will always

face great uncertainty. They must observe the world, use

what they see together with models to make forecasts,

choose what they think is the best strategy at the moment,

and then a few years later, repeat the entire cycle. By

building simple ‘‘decision agents’’ we have been able to do

something very similar within the world of the ICAM mod-

el environment. Then, across a range of alternative model

worlds we run repeated stochastic simulations of the model

and ask, among a range of plausible alternative behavioral

strategies which our agents might adopt, which one does best

in the face of the uncertainties about both coefficient values

and model structures? In the case of the climate problem, a

strategy that tracks and attempts to control atmospheric

concentration of greenhouse gases (as opposed to emissions

or temperature), using a quadratic penalty function, seems to

do best. Of course, not all problems with high uncertainty

will yield such a single general result. In some cases, even a

recasting of the problem in terms of the behavior of

autonomous agents is likely to lead to different behaviors

for different combinations of model structure.

We are of course not the first to argue the importance of

an adaptive approach in environmental decision making.

There has been a long tradition of arguing the strength of

such approaches, particularly among systems ecologists. In

what is now a classic paper, Clark [29] articulated a

compelling argument for the superiority of such approaches

when knowledge is incomplete. Lee [30] has elaborated

Table 1. Illustration of the wide range of results that can be obtained with ICAM depending upon different structural assumptions, in this case, about the

structure of the energy module and assumptions about carbon emission control. In this illustration, produced with a 1997 version of ICAM, all

nations assume an equal burden of abatement by having a global carbon tax. Discounting is by a method proposed by Schelling. Other versions of

ICAM yield qualitatively similar results. Table based on [28].

Model components Model structural variants

M1 M2 M3 M4 M5 M6 M7 M8 M9

Are new fossil oil & gas deposits discovered? no yes no no yes yes no yes yes

Is technical progress that uses energy affected

by fuel prices and carbon taxes?

no no yes no yes yes yes yes yes

Do the costs of abatement and non-fossil energy

technologies fall as users gain experience?

no no no yes no no yes yes yes

Is there a policy to transfer carbon saving technologies

to non-Annex 1 countries?

no no no no no yes yes no yes

TPE BAU in 2100 (EJ) Mean 1975 2475 2250 2000 3425 2700 1450 3550 2850

TPE control in 2100 (EJ) Mean 650 650 500 750 500 500 675 750 725

CO2 BAU 2100 (109TC) Mean 40 50 50 40 75 55 25 73 55

Std. Deviation 28 18 36 29 29 23 22 27 21

Mitig. Cost (%Welfare) Mean 0.23 0.44 0.14 0.12 0.48 0.33 0.05 0.23 0.17

Std. Deviation 0.45 0.23 0.23 0.22 0.28 0.12 0.07 0.12 0.11

Impact of delay (%Welfare) Mean �0.1 0.2 �0.6 0.0 �1 �0.5 �0.1 �0.6 �0.4

Std. Deviation 1 0.3 1 0.7 1.2 0.9 0.5 0.8 0.6

Note. TPE¼Total Primary Energy.

BAU¼Business as Usual (no control and no intervention).

Sample size in ICAM simulation¼ 400.
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these arguments, drawing examples on water, fisheries and

power management in the US Pacific North West. The Board

on Sustainable Development [31] of the US National

Research Council has advanced similar arguments. In the

area of climate assessment the report of Working Group III

of the IPCC [32] notes that in addition to our own work, the

work of Bankes [33], Lempert et al. [34, 35], Laitner and

Hogan [36], Van Asselt and Rotmans [37], and Yohe [38] has

explored aspects of adaptive approaches to management.

In a paper in the journal Risk Analysis [3], we explore and

illustrate the issue of dealing with models which one

believes are only appropriate within a specified domain of

the model parameter space. We also explore problems that

can arise from the fact that when a complex model must be

operated into a region of its phase space for which it was not

designed, different elements of the model may degrade at

different rates. For example, different elements of a time-

stepped model may become unreliable at different times as

the model is run far into the future. One strategy is to assess

the probability of model failure as a function of time, or of

some endogenous model variable (incremental radiative

forcing in the case illustrated here). Then one can display a

time series that reports the likelihood of model failure along

with the time series of model output. Alternatively it may be

possible to identify and disaggregate the various sources of

model failure and treat them separately. The one serious

problem with this strategy is that in complex real-world

situations, experts are likely to be able to identify only a

portion of all the limitations or ‘‘surprises’’ that could be

encountered, and are likely to be willing to assess

probabilities for only a subset of the total. Still, identifying

some and getting part way to a full treatment is clearly better

than simply ignoring the possibilities.

When it is known that one portion of a model will become

unreliable more rapidly than other portions of the model

(e.g., over time, the socioeconomic sub-model of ICAM will

become unreliable before the geophysical model), it may be

possible to develop much simpler order of magnitude

models, or perform bounding calculations, which allow

one to say something, even when detailed prediction is not

possible. Through the use of subjective judgments, the

results of several such analyses can be weighted and

combined, in this case over time, to yield a more meaningful

projection than would be obtained by running a detailed

high-resolution model well past its domain of applicability.

Before drawing conclusions from such results it would be

wise to perform analysis of their sensitivity to the choice of

subjective weights.

Figure 7 illustrates the general strategy we proposed. One

starts with a detailed model that is likely to only be reliable

for a few years. Gradually one moves over to a much simpler

model based on order of magnitude considerations. Finally,

in the long-term, one can only bound the result, without

giving best estimates. The weighting functions that are used

to combine models, and make the switch from one model to

another over time, must, of course, be based on subjective

judgment. While the illustration shows three models over

time, there is no reason why the number could not be more or

less than three. Interested readers can find details and a

specific application in [3].

5. CONCLUSIONS

I conclude by returning to the four questions which I posed at

the beginning of Section 3 and offering my personal

conclusions.

Question 1: How can we use uncertainty analysis, bounding

analysis, and similar methods, to limit the range of possible

‘‘answers’’ even if perfect understanding and predictive

capability cannot be achieved over the next few decades?

Fig. 7. Schematic illustration of the strategy of switching to progressively

simpler models as one moves into less well understood regions of the

problem phase space, in this case, over time. One starts with a detailed

model that is likely to only be reliable for a few years. Gradually one

moves over to a much simpler model based on order of magnitude

considerations. Finally, in the long-term, one can only bound the

result, without giving best estimates. The weighting functions for

combining the models are based on subjective judgment. While the

illustration shows three models over time, there is no reason why the

number cannot be more or less than three. From [3].
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Answer: Investigators in this field are well on their way to

doing this. As we move forward, we need to pay particular

attention to:

– the fact that the ensemble of results from GCMs probably

does not span the full range of uncertainty.

– the possibility that the future may not be simple linear

extrapolations from the past.

– the fact that there is no ‘‘objective’’ way to state many

relevant uncertainties, they are inherently subjective.

Question 2: How can we develop a clearer indication of what

we can expect to know, and what we will probably not be

able to know, about climate change and its likely impacts on

the time-scale of the next few decades?
Answer: Doing this using expert subjective judgment poses

no fundamental methodological challenge, but there is a very

serious motivational bias. Investigators who have been

enjoying substantial financial support by selling their

research as promising answers, display reluctance to be

too explicit about the likely limits of those answers since that

might contribute to a reduction in the amount of future

research funding.

Question 3: How can we use scientific knowledge and policy

analysis to develop strategies for social and individual

behavior and choice that are likely to be robust in an

inherently uncertain world?
Answer: We have begun, but we need to do much more. We

should abandon the (economists’) fiction that we can find

‘‘optimal policies’’ and look instead for feasible policies.

This includes:

– Acknowledging that consideration of equity are likely to

be as or more important than efficiency.

– Looking for new and different ways to move forward (see,

for example, [2]).

Question 4: As we elaborate our characterization of uncer-

tainty, and what we cannot expect to know, how can we do it in

such a way as not to provide aid to those who argue that no

action is warranted until all uncertainties have been resolved?
Answer: We probably can’t. However, the general public is

pretty smart. Both they, and many corporate leaders, are

coming around on this issue, even in the US! The public deal

with uncertainty all the time. They have personal experience

with making decisions in the face of uncertainty. When it is

properly explained, they can understand both the basic

uncertain nature of the climate problem and the need to take

action in the face of that uncertainty.
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