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ABSTRACT

An inverse methodology that integrates qualitative and quantitative aspects of uncertainty in environmental modeling is presented.

The methodology, RIMME (Random-search Inverse Methodology for Model Evaluation), comprises three Monte Carlo procedures:

(i) Regionalized Sensitivity Analysis (RSA); (ii) Tree-Structured Density Estimation (TSDE); and (iii) Uniform Covering by

Probabilistic Rejection (UCPR). Unlike conventional direct predictive approaches, inverse methods work backwards to identify

attributes of the model, and the corresponding real system, that are critical to attaining a prescribed endpoint. RIMME is capable of

integrating scientific uncertainties, in the model and empirical data, with non-standard, qualitative forms of uncertainty, such as the

value-laden policy and stakeholder issues that feature prominently in contemporary environmental assessments. RIMME is applied

to a case study of Lake Lanier, Georgia (USA), a key resource whose water quality and ecological integrity is perceived by society to

now be threatened by rapid urbanization within and around its watershed. Results indicate that RIMME provides an effective bridge

across the gap between traditional science and the now emerging post-normal science era.
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1. INTRODUCTION

Conventionally, uncertainty analysis in environmental mod-

eling is driven essentially by a forward-reasoning process

which, for a given problem situation, follows the critical

path of: (i) constructing and calibrating a model of the

system of interest; (ii) defining a number of optional solution

strategies; (iii) using model simulation to shortlist candidate

solutions; (iv) using model-based optimization to select the

best solution strategy; and (v) using the model to predict

the outcome of the selected strategy. This last step includes

the analysis of prediction uncertainty, which then informs

decision-making and management actions to restore or

maintain the desired environmental quality. While the

literature is replete with its applications to a broad range

of environmental problems (see, for example, the case

studies in [1]), the foregoing approach is not without its

shortcomings, especially in the handling of uncertainty.

The quality of model-based predictions is often judged

primarily by how accurately the constituent parameters are

estimated during the prior calibration stage. In other words,

prediction uncertainty is typically attributed mainly to

parameter uncertainty, and much less to structural and data

uncertainties. Data uncertainties are inevitable, not only

because of human and instrumentation errors, but also due to

the sheer scale of the environmental problems that have

emerged in recent times. For instance, the ecological impacts

on Lake Lanier of rapid urbanization in its watershed [2],

the equitable allocation of the water resources of the

Apalachicola, Chattahoochee, and Flint river basins among

the neighboring states of Alabama, Georgia, and Florida in

the United States [3], and the global impacts of humans on

climate change, and vice versa [4], are typical examples of

the issues now being addressed with the aid of simulation

models. However, the currently available empirical data are

inadequate, both in quality and quantity, to rigorously assess

such large and complex models and, as a result, their

predictions are often grossly uncertain. Structural uncer-

tainty is a poorly understood, yet inadequately researched,

and often controversial aspect of model evaluation (see the

discussion of [5]). Parameters are attributes of a given choice

of model structure. Thus, parameter uncertainty derives its

meaning only within the context of the model structure

under consideration. For this reason, structural uncertainty

is typically analyzed and expressed in terms of parameter

uncertainty, which always invokes questions about uncer-

tainty in the choice of the model structure itself. A model

structure is selected based on existing theoretical paradigms
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and available empirical data, and sometimes, on experience

and intuition. The fact that a choice is made among

alternative model structures already introduces uncertainty

that often may not be elucidated by formal quantitative

methods. Nonetheless, promising insights have emerged

from recent studies on methodologies for model structure

evaluation (for example, [5–9]). Two other sources of un-

certainty deserve more focus [10]: (i) the future temporal

pattern of variation of forcing functions and external inputs

to the system; and (ii) the estimated initial state of the system

at the start of the prediction. These are sometimes called

scenario uncertainties. Future external stressors are pre-

dicated upon future events that cannot be anticipated well in

advance. Initial states are measured directly, or estimated

from prior models. The errors and uncertainties associated

with estimating stressors and initial states often contribute

substantially to model prediction uncertainty.

Yet, uncertainty is not limited to the model, data, and

scenarios, but includes several qualitative and practical issues,

such as, model suitability to the problem context, its influence

on policy-making, model development practices, conceptual

assumptions, ease of use, and access to technical support [11].

Such issues potentially undermine the credibility of integrated

assessment models, and cannot be assessed quantitatively. In

an attempt to resolve this inadequacy, the NUSAP method

(Numerical Unit Spread Assessment Pedigree) was developed

and has been successfully applied to the evaluation of

uncertainties in a global energy model [12].

This study explores uncertainty analysis in the context of

a backward-reasoning process, intended to complement,

rather than substitute, the traditional forward-reasoning

process. Based on a novel concept of adaptive community

learning, implemented as an iterative process for generating

environmental foresight [2, 13], backward-reasoning follows

a critical path of: (i) eliciting stakeholder concerns for the

future state of the environment; (ii) encoding the science

base in the form of a mathematical simulation model; (iii)

using the model to evaluate the plausibility of the

stakeholder-derived endpoints of step (i); (iv) communicat-

ing the results back to the stakeholders; and (v) feedback

from the stakeholders, in the form of revised outlooks for the

future, which returns the process back to step (i) for another

iteration. In this process, the science base is also enhanced,

as subsequent iterations progressively identify the critical

scientific uncertainties that are most relevant to the stake-

holders’ concerns. In essence, the process uses target

endpoints to evaluate the model’s predictive capabilities,

and the backcasting of such endpoints to reveal key

unknowns and direct the focus of scientific research on the

environmental system. Inclusion of stakeholders in the

uncertainty evaluation process invites the need to deal with

ambiguities in value judgment and human imagination, here

expressed qualitatively by the several different endpoints

speculated by individual stakeholders. Indeed, this is the

essence of an emerging post-normal science era that features

equitable participation between scientists and stakeholders

in decision-making on science-related issues [14, 15].

In what follows, an inverse approach to uncertainty

analysis is described and applied to a case study of the

multipurpose Lake Lanier, the single most important water

resource in the state of Georgia, USA, and the focus of recent

studies on the long-term ecological integrity of rapidly

developing urban watersheds [2]. The goal of this pre-

liminary assessment is to answer two questions of uncer-

tainty: (i) to what extent are the imagined future endpoints

plausible?; and (ii) what are the key scientific uncertainties

that determine their plausibility? To this end, computational

analysis of uncertainty is implemented by a recently

developed inverse methodology, called RIMME (Random-

search Inverse Methodology for Model Evaluation), that

integrates three Monte Carlo procedures [16]: univariate

Regionalized Sensitivity Analysis (RSA; [17]), extended by

multivariate Tree Structured Density Estimation (TSDE;

[18]), and augmented with a Uniform Covering by Prob-

abilistic Rejection (UCPR; [19]) sampling procedure.

These procedures still conform to the traditional param-

eter-centric approach to model evaluation, and indeed share

a common ancestry with several other Monte Carlo-based

methods, such as Generalized Likelihood Uncertainty

Estimation (GLUE; [20]), Bayesian Monte Carlo [21], and

Markov Chain Monte Carlo [22]. This study does not

evaluate structural uncertainty, but rather, employs a single

model structure derived from generally accepted ecological

theory and well-known principles of system dynamics. The

analysis will also incorporate scenario uncertainties arising

from variations in the forcing functions, and from errors in

estimating the initial state of the system. Specifically, the

temporal patterns of forcing functions and the initial states

will be parameterized and combined with the conventional

process parameters of the simulation model.

2. THE RIMME METHODOLOGY

Uncertainty is often measured as a probability, especially

when dealing with empirical quantities [23]. Sampling is

therefore an obvious approach to the analysis of uncertainty.

Monte Carlo simulation, the simplest and most common

sampling-based method, forms the basis of the three

procedures that constitute RIMME.

2.1. Regionalized Sensitivity Analysis (RSA)

The goal of RSA is to discriminate key from redundant

uncertainties in the model’s parameterizations, in order to

identify which constituent processes play a critical role in

matching a qualitative definition of behavior of the system of

interest. In perhaps the earliest landmark application of the

Monte Carlo technique to environmental problems, the RSA

procedure was developed in the late 1970s, and employed to
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provide direction for research on the (then) poorly under-

stood ecological system of the Peel Inlet estuary, in

Southwestern Australia [17, 24]. The focus then, was on

cultural eutrophication attributed to the excessive growth of

the nuisance alga Cladophora aff. battersii. Recently, the

RSA procedure has been applied to model structure

identification of a reservoir ecosystem in the southeastern

United States [8].

In principle, RSA employs the parameters of the model as

surrogates for the processes (the constituent hypotheses)

they describe in the model’s functional representations.

Thus, a key system process is identified by the sensitivity of

its respective parameter(s) in the model. The procedure

involves two fundamental tasks: (i) a qualitative definition of

system behavior, and (ii) a binary classification of model

outputs. The behavior definition includes a set of thresholds,

ceilings, and time bounds derived from available informa-

tion about the system, which may include empirical data,

descriptive observations, or even, informed speculations.

These qualitative definitions are composed into a set of con-

straints that depict a corridor of uncertainty through which the

model output trajectory must pass in order to qualify as an

acceptable simulation of system behavior. Thus, the behavior

definitions provide the (uncertainty-laden) task specification

for evaluating model output, analogous to the (error-prone)

empirical data used in conventional model calibration.

However, sensitivity in the RSA procedure is conditioned on

the behavior definitions, in the form of a binary classification

scheme that qualifies a simulation as exhibiting either

behavior (B), if the model outputs fall within the defined

constraints, or nonbehavior (NB), if otherwise.

A range of values is defined for each of p model parameters

�k, 1� k� p, to reflect the uncertainty in the parameters.

Monte Carlo simulation is performed on the model, using

vectors sampled from a joint distribution defined over the

range of parameter values. The simulation outputs are clas-

sified as either B or NB simulations for the respective

candidate parameter vectors, leading to a set of binary ele-

ments that indicate which simulations produce the defined

behavior, and which do not. Thus, for each parameter, two sets

of values are distinguished: {�kjB} in the behavior simula-

tions, and {�kjNB} in the nonbehavior simulations. Next, the

Kolmogorov-Smirnov two-sample test (two-sided version) is

performed on each parameter, to determine whether its B and

NB values come from different statistical populations. The

hypothesis test is stated formally as follows [25]:

H0: fmð�kjBÞ ¼ fnð�kjNBÞ
H1: fmð�kjBÞ 6¼ fnð�kjNBÞ

Test statistic: dm;nð�kÞ ¼ supXkFmð�kjBÞ � Fnð�kjNBÞk
ð1Þ

where Fm(�kjB) and Fn(�kjNB) are the sample marginal

distribution functions for m behaviors and n nonbehaviors;

fm(�kjB) and fn(�kjNB) are the respective marginal prob-

ability density functions; the supX notation, defined as the

supremum over all X (X, being any set of numbers), refers to

the largest vertical separation between the two distribution

functions. The rejection rule is expressed as follows: at what

statistical significance level does the computed value of dm,n

determine the rejection of H0? According to the Kolmogorov-

Smirnov distribution, a high dm,n value generally implies a

low significance level for any given values of m and n, and

vice versa.

The importance of the uncertainty in each parameter, and

by extension, the role of its respective process in matching the

behavior definition, is inversely related to this significance

level. A low significance level (i.e., a high dm,n value) means

there is a significant difference between the distributions of

{�kjB} and {�kjNB}, suggesting a sensitive parameter, which

indicates a key system process. On the other hand, a high

significance level (i.e., a low dm,n value) supports H0, and

indicates a redundant parameter and process; in other words,

any value within the predefined range is as likely to succeed,

as it is to fail, in matching the behavior definition. Finally, the

parameters are ranked in descending order of their respective

dm,n values, and conveniently grouped into three sensitivity

classes, based on the significance level, as: [1] critical, [2]

important, and [3] insignificant.

2.2. Tree-Structured Density Estimation (TSDE)

The aim of the TSDE procedure is to split the parameter

domain into a number of high- and low-density sub-

domains, using estimates of the joint probability density

function of the behavior-giving parameters {�kjB} derived

from the prior RSA procedure. Spear et al. [18] reviewed

their experiences with the RSA procedure, and identified two

fundamental weaknesses. First, the success rate, i.e., the

fraction of behavior (B) simulations obtained from the

Monte Carlo simulation, hardly exceeded 5% for large

models with 20 or more parameters. Thus, RSA often lacked

sufficient statistical power to credibly evaluate the difference

between the behavior and nonbehavior simulations. The

second issue concerned the correlation structures and the

region occupied by the B parameters within the parameter

domain. Whereas, the condition fm(�kjB) 6¼ fn(�kjNB), i.e., a

significant difference between the distributions of B and NB

parameter values (Equation 1), is sufficient to confirm

parameter sensitivity, Spear and Hornberger [17] argue that

the converse is not true, because any covariance structure

induced under the binary classification cannot be identified

by the univariate dm,n test statistic alone. To elaborate on this

argument, some model parameters that are combined as

products or quotients in process functions may compensate

numerically for one another over their respective sampling

domains in order to match the behavior definition, thus

exhibiting somewhat flattened marginal distributions in

f(�kjB) and f(�kjNB) that therefore do not clearly distinguish

between the B and NB values in the RSA procedure. Thus, a
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parameter ranked as insignificant (Class 3), on the basis of

the dm,n test statistic only, is not sufficient to classify its

related process likewise.

The foregoing led to an exploration of the Classification

And Regression Trees (CART) techniques [26], an effort that

culminated in a novel Tree-Structured Density Estimation

(TSDE) method for multivariate analysis of the posterior B

parameter distributions. The TSDE technique emulates the

procedure for constructing a histogram, except that it

employs a sequence of recursive binary splits to partition

the parameter domain into sub-domains with approximately

uniform density, consisting of small regions of relatively

high-density, and larger sparsely populated regions. These

sub-domains are similar, respectively, to the peaks and tails

(or troughs) of a histogram. Thus, TSDE addresses the

second fundamental weakness of the RSA procedure, by

way of a multivariate analysis directed at revealing possible

correlation structures among the model parameters.

The TSDE algorithm is as follows. The m behavior-giving

parameter vectors {�jB} are treated as samples from a

population with unknown probability density function f(�jB).

The task is to construct a good local approximation f1(�jB) at

any point within the p-dimensional parameter sampling

domain D. The relative density for a sub-domain Sj, 1� j� d,

d, and its estimation error (L) are calculated as [18]:

f
ðiÞ
1 ð�jBÞ ¼ mj

m
	 1

Sj

ð2aÞ

LðiÞ ¼ �
Xd

j¼1

ð f
ðiÞ
1 ð�jBÞÞ2 	 Sj ð2bÞ

where mj is the number of B parameter vectors in Sj, d the

number of sub-domains, and i the iteration index. The first

density estimate f1
(0), i.e., for the entire parameter domain, is

1=D, and thus, L(0) is �(1=D). The sub-domains are

constructed by successive binary splits on the axis of the

parameter which produces the largest increase in overall

accuracy of the density estimate for the multivariate

distribution. This identifies the key parameter at every stage

of the recursion. To determine how to split a domain, the

range for each parameter (i.e., on each axis of the p-

dimensional parameter hyperspace) is divided into q equal

bins, and the grid points are used as trial splits of the

parameter domain; hence, there will be (p 	 q) different ways

to make a split. For each trial split, (L(0)� L(1)) measures the

increase in accuracy of the density estimate. Thus, the TSDE

searches for the optimal split that maximizes (L(0)� L(1)). The

splitting process is repeated on each of the two newly created

sub-domains until one of the following convergence criteria is

reached: (i) the maximum increase in accuracy produced by

the next set of trial splits is insignificant, or (ii) the sample size

in each sub-domain is smaller than some critical number.

The result is a binary (inverted) tree structure, as depicted

in Figure 1, in which the root node represents the original

sampling domain, the other nodes are sub-domains, and the

branches (the splits) are determined by the key parameters.

The tree ends in several terminal nodes, the final partitions of

the original parameter sampling domain, consisting of small

densely populated, and larger sparsely populated regions.

The high-density terminal nodes (HDTN) indicate those

regions of the parameter space with high probabilities of

matching the behavior definitions. Three useful inferences

can be made by examining the TSDE tree. First, the

combined volume of the HDTNs, expressed as a percentage

of the total sampling domain volume, indicates the prob-

ability of matching the specified behavior definition.

Second, the number of high-density terminal nodes that

each parameter defines indicates the relative importance of

its role in matching the behavior definition. In general, the

higher up a parameter is in the tree, the more critical is its

role. Third, tracing down to each HDTN reveals the key

parameters that collectively interact to match the behavior

definition, thereby illustrating, graphically and qualitatively,

the multivariate correlation structures among the behavior-

giving parameter values. By extension, therefore, the key

process interactions in the real system can also be identified.

2.3. Uniform Covering by Probabilistic

Rejection (UCPR)

The UCPR procedure was originally presented as a full-

fledged parameter estimation and uncertainty analysis tech-

nique for application to ecological models [19]. However,

within RIMME, the efficient sampling routine of UCPR

provides a means for enhancing the statistical power of RSA

by improving the success rate of the Monte Carlo simulation,

thus addressing the first fundamental weakness of the RSA

procedure. In essence, UCPR systematically searches the

parameter domain for those values that produce B simulations.

The UCPR algorithm starts with a stored sample of v

parameter vectors that define a sub-region S
ðiÞ
v (see Fig. 2),

where i is the iteration index. Trial vectors are randomly

generated in succession within and around S
ðiÞ
v . However, the

trial model simulation is executed only if the trial vector is

sufficiently close to S
ðiÞ
v . The closeness is determined as a

fraction c of the average nearest-neighbor (euclidian)

distance r
ðiÞ
v between points in S

ðiÞ
v , where c is chosen such

that the likelihood of generating a trial point farther than

(c 	 r
ðiÞ
v ) from S

ðiÞ
v is low (say, 1% or 5%). The sub-region

defined by (c 	 r
ðiÞ
v ) is shown as R

ðiÞ
v in Figure 2. The trial

vector is substituted into S
ðiÞ
v if its corresponding model

simulation produces a better fit to the data (in this case, the

behavior definition) than the worst-fitting member of S
ðiÞ
v .

UCPR resembles Markov Chain Monte Carlo [27, 28], in

that both methods employ a trial and rejection sampling

approach for updating the distribution of parameter vectors.

In the so-called Metropolis algorithm, the next state of the

Markov chain is chosen by considering a small change to the

current state, and then accepting or rejecting the change after
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comparing the probabilities of the current and altered states.

In UCPR, rejection of the trial parameter vector is based on:

(i) its closeness (distance-wise) to the current distribution of

vectors, and (ii) its ability to better simulate system behavior

than any of the current vectors. UCPR is quite efficient in

locating behavior-giving parameter vectors, since it calls the

model less frequently. Indeed, it affords a controlled search

of the parameter domain D. With each subsequent iteration

(i), the value of rv changes with the shape and volume of Sv,

which either converges on the behavior-giving parameters

within S
ðiÞ
v , or migrates beyond S

ðiÞ
v to locate other such

regions of the parameter sampling domain. Locating the

various regions of behavior-giving parameter values facil-

itates a global assessment of parameter uncertainty. In the

evaluation of a nonlinear toxicological model, Klepper and

Bedaux [29] employed UCPR to demonstrate how extant

parametric methods, which often assume a priori asymptotic

normal parameter distributions, could lead to substantial

errors in estimating parameter confidence intervals.

2.4. Synthesis of RIMME

RIMME takes advantage of the strengths of its component

procedures. Through the behavior definitions, RSA utilizes a

variety of expressions that describe several attributes of the

Fig. 1. Example of TSDE tree diagram. High-density terminal nodes are shaded. Node legend: 1st line – node number; 2nd line – relative
density of points in the node; 3rd line – input factor that splits intermediate node, or, percentage volume of terminal node.

Fig. 2. The UCPR algorithm, depicted on a 2-dimensional sampling
domain (D). For each iteration (i), �ðiÞ

v are parameter vectors
defining points in D; sub-domain SðiÞv contains the best fitting
points; RðiÞ

v approximates SðiÞv with an aggregate of circles of
radius (c 	 rðiÞv ) around each point; trial points are generated
uniformly in the box around RðiÞ

v .
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system, for example: (i) total production of selected biotic

components of an ecosystem, (ii) average concentrations of

chemical constituents of an aquatic system; and (iii)

maxima, minima, and duration of specific hydrologic and

geologic events. Such attributes typically feature in most

empirical and casual observations of the natural environ-

ment. In the seminal work of Hornberger and Spear [24], the

behavior definitions were derived from empirical observa-

tions. Numerical data from previous studies on the Peel Inlet

(Australia) were translated directly into a set of intervals,

each defining the range of values for the state variables of the

model. Thus, uncertainty due to data error was included in

the evaluation of model outputs. By the same token,

therefore, it should not be hard to imagine that multiple

casual observations, especially by scientifically lay persons,

could also be translated, albeit indirectly, into a set of

numerical intervals. Thus, in employing such subjective

information, non-standard forms of uncertainty are incorpo-

rated into the analysis of model outputs.

In the following case study of Lake Lanier, RSA is

conducted on a generalized aquatic food web model to

derive a sensitivity-based ranking of the constituent reservoir

ecological processes. The analysis is conditioned on

stakeholder-derived behavior definitions that describe alter-

native speculated ecological endpoints. Since RSA is

essentially a univariate analysis, the key uncertainties

identified by the resulting rankings indicate only single-

factor effects, and do not identify process interactions. To

address this deficiency, the analysis is expanded by employ-

ing the multivariate TSDE procedure for identifying

parameter correlation structures, and for estimating the

relative feasibility of the alternative ecological endpoints.

However, prior application of RSA to a similar model, on a

smaller reservoir in the same region as Lake Lanier [8],

suggests that Monte Carlo simulation might yield very low

success rates. In other words, RSA may not generate a large

enough sample size of behavior-giving parameter sets for

TSDE to produce credible results. In such a situation, UCPR

will precede TSDE in order to search for behavior-giving

parameter values within the sampling domain.

Fundamentally, RIMME adopts a Bayesian approach to

model uncertainty evaluation. In executing the RSA

procedure, a prior joint distribution of parameters, f(�), is

updated via Monte Carlo experiments on a simulation

model, to produce posterior distributions, f(�jB) and

f(�jNB), conditioned on the match and mismatch of model

outputs with system behavior definitions. The TSDE

procedure further characterizes the correlation structures

within f(�jB) by identifying the high-density regions, which

could be updated by further simulation experiments. A

companion procedure, GLUE [20], is also founded on

Bayesian principles. Unlike RSA, which employs a binary

(2-set) classification, GLUE adopts an n-set classification of

the Monte Carlo simulation outputs. The informing like-

lihood functions (actually, goodness-of-fit between model

output and observational data) are also used as weights to

update prior parameter uncertainties before propagation into

model prediction uncertainties. In contrast, RSA is more

simplistic in the sense that the behavior-giving parameter

vectors are treated as equally likely simulators of the real

system, and when combined with TSDE, the correlations

within the posterior parameter distributions are better

described. RIMME, GLUE, and other Monte Carlo methods

indeed complement each other in various ways, and their

relative benefits often depend on the nature and quality

of information available for the system of interest. For

example, whereas GLUE is well suited to applications that

involve numerical data, RIMME seems to perform better

with casual observations and experiential knowledge. The

following case study will demonstrate the capabilities of

RIMME in situations that integrate stakeholder experience

and imagination with conventional scientific theory.

3. CASE STUDY: LAKE LANIER, GEORGIA, USA

Lake Lanier (normal storage: 2.4
 109 m3; surface area:

150 km2) is one of nine reservoirs built and managed by the

United States Army Corps of Engineers in the state of

Georgia. It is impounded on the Chattahoochee River by the

Buford Dam, about 80 km northeast of Atlanta (Fig. 3), and

provides hydropower generation, water supply to Atlanta

and parts of North Georgia, flood control and navigation, as

well as recreation. It was also the focus of a recent study on

the ecological integrity of rapidly urbanizing watersheds [2].

The Lanier study aimed at integrating the social sciences (in

Fig. 3. Location map of Lake Lanier. Inset: the Apalachicola-
Chattahoochee-Flint river basin.
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particular, sociology), informed by the concerns of the local

community of stakeholders for the future condition of the

reservoir and its environs, with the natural sciences of

limnology and hydrology, represented by mathematical

simulation models. Thus, the concept of adaptive commu-

nity learning emerged, whereby stakeholder interests direct

the focus of scientific research, while science, in return,

systematically evaluates the feasibility of stakeholders’

concerns for their cherished piece of the environment.

Figure 4 illustrates the procedure for adaptive community

learning employed for this study. In this framework, RIMME

provides a computational scheme for integrating stake-

holder imagination with scientific theory. Stakeholder-derived

ecological endpoints, expressed in terms of selected reser-

voir water quality indicators, are translated into behavior

definitions. The RSA procedure, augmented with UCPR

sampling, ranks the importance of selected uncertain model

input factors (parameters, initial states, and forcing func-

tions), conditioned on the prescribed behavior definitions.

This ranking identifies key input factors, from which

corresponding key ecosystem attributes (internal ecological

processes and external stressors) are derived. In addition, the

TSDE procedure estimates the likelihood of attaining the

speculated endpoints, given the scientific knowledge

encoded in the model. The feedback allows stakeholders to

revise their perceptions and endpoints, thus facilitating

another iteration through the procedure. As a side-product,

the ranking of ecosystem attributes assists scientists in

identifying priority areas for future research on the

reservoir’s ecology.

3.1. The Simulation Model and Input Factors

The model simulates the seasonal dynamics of 13 state

variables in the pelagic food web and surface sediment

layer of the reservoir ecosystem. The state variables

represent functional groups that include biota, soluble

reactive phosphorus (SRP), organic matter (detritus), and

suspended sediments, linked by physical and trophic inter-

actions. The model integrates three basic ecosystem con-

cepts (see Fig. 5): (i) the classical grazing food chain,

represented by the pathway: phosphorus! phytoplankton!
macrozooplankton! fish; (ii) the microbial loop, pathway:

detritus ! microbes !microzooplankton!macroinverteb-

rates! fish; and (iii) the release of phosphorus from the

surface sediment layer into the water column. Table 1 lists the

state variables, forcing functions, and bathymetry constants.

In addition, the three sources of model uncertainty adopted as

input factors for this analysis (i.e., the process parameters,

initial states, and forcing functions) are listed in Tables 2–4.

The model equations and parameterization of input factors are

detailed in Osidele and Beck [30]. Overall, 94 input factors

are analyzed, comprising 57 process parameters, 12 initial

conditions, and 25 parameters that describe the temporal

pattern of forcing functions.

3.2. The Behavior Definitions

Elicitation of stakeholders’ concerns for the future of Lake

Lanier was conducted with two experimental devices [2, 31]:

a questionnaire survey; and a foresight workshop. The

Fig. 4. Schematic representation of the framework for adaptive community learning.
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composition of behavior definitions for this analysis is

derived solely from the results of the foresight workshop.

The workshop was aimed at generating foresight from those

who have detailed scientific and experiential knowledge

about Lake Lanier [32]. In order to capture the extremes of

stakeholder foresight, participants at the workshop were

required to speculate on feared and desired endpoints for the

reservoir, and to quantify expected changes in selected

reservoir water quality indicators for each endpoint on a

predefined logarithmic scale of �10 (one-tenth of the current

value) to þ10 (ten times the current value). Details of the

workshop results, and the translation of the speculated

changes into system behavior definitions are reported in

Cowie et al. [32] and Osidele [16].

Table 5 summarizes the distribution of responses from the

participants as quantiles for 10%, 25%, 50% (the median),

75%, and 90%. The medians reflect generally accepted

concepts of reservoir limnology. For the feared endpoint,

nutrient concentrations (Total Nitrogen and Total Phosphorus)

are expected to increase, leading to increased algal production

(Chlorophyll a) and a decrease in transparency (Water

Clarity). The increased water temperature undermines fish

productivity by reducing available habitat (certain prized

species often prefer the cooler water in the deeper parts of the

reservoir). Higher temperatures also lead to faster rates of

respiration and microbial decomposition, which further starve

the fish of dissolved oxygen. These directions of change are

all reversed for the desired endpoint, as indicated by the signs

of the medians. The distributions also reflect uncertainty in the

Fig. 5. Schematic representation of the simulation model for Lake Lanier.

Table 1. Features of the Lake Lanier ecological model.

Symbol Feature Unit

State variables
PE Epilimnion SRP mgP L�1

PH Hypolimnion SRP mgP L�1

PS Dissolved Porewater Phosphorus mgP L�1

A Phytoplankton (as Carbon) mgC L�1

M Microbes (as Carbon) mgC L�1

H Microzooplankton mg L�1 dry wt.
C Macrozooplankton mg L�1 dry wt.
I Macroinvertebrates mg m�2 dry wt.
F Larval-Juvenile Fish kg ha�1

DL Labile Detritus (in water column) mgC L�1

DR Refractory Detritus (in water column) mgC L�1

DS Detritus (in sediment layer) gC m�2

TSS Suspended Solids mg m�2

Forcing functions
Qin Upstream inflow m3 s�1

Qout Downstream discharge m3 s�1

Lo Incident solar radiation cal m�2 day�1

Te Epilimnion water temperature 
C
Th Hypolimnion water temperature 
C
 L Photoperiod –

Bathymetry constants
de Epilimnion depth m
dh Hypolimnion depth m
Vr Reservoir volume m3

Ve Epilimnion volume m3

Vh Hypolimnion volume m3

Ar Reservoir surface area m2

At Thermocline surface area m2

272 O.O. OSIDELE AND M.B. BECK



overall stakeholder foresight for Lake Lanier. For example, in

speculating the desired endpoint, about 80% of the partici-

pants (the 10% to 90% quantiles) expect that fish population

would increase to between one- and eight-times the current

levels. Such uncertainty informs the composition of behavior

definitions for this analysis.

The behavior definitions are prescribed in terms of three

water quality indicators: (i) soluble reactive phosphorus

(SRP) concentration; (ii) Chlorophyll a concentration, and

(iii) fish biomass. Also, they cover the months of May–

September. This is the most critical period of the year for

water quality in Lake Lanier, because it coincides with

summer stratification, peak primary production, hypolim-

netic dissolved oxygen depletion, fish spawning, and the

peak recreational season. The resulting behavior definitions

are as follows (see Figs. 6 and 7):

Feared endpoint:

� [P]: epilimnion SRP concentration should not exceed

30 mg L�1;

� [U]: mean epilimnion SRP concentration should not

exceed 16 mg L�1;

� [P]: Chlorophyll a concentration should not exceed

25 mg L�1;

Table 2. Input factors for the Lake Lanier ecological modela.

Symbol Description Unit nv min max

Process parameters
�A Max. growth rate: phytoplankton day�1 1.0 3.0
�M Max. growth rate: microbes day�1 1.0 5.0
�H Max. growth rate: microzooplankton day�1 0.1 0.5
�C Max. growth rate: macrozooplankton day�1 0.05 0.2
� I Max. growth rate: macroinvertebrates day�1 0.01 0.05
�F Max. growth rate: fish day�1 0.01 0.05
KPE,A Half-saturation: phos.! phyt. mgP L�1 0.001 0.01
KPH,M Half-saturation: phos.!microbes mgP L�1 0.0 0.001
KD,M Half-saturation: detritus!microbes mgC L�1 0.02 0.15
KA,H Half-saturation: phyt.!microzoop. mgC L�1 1.0 10.0
KM,H Half-saturation: microbes!microzoop. mgC L�1 0.01 0.05
KD,H Half-saturation: detritus!microzoop. mgC L�1 0.01 0.05
KA,C Half-saturation: phyt.!macrozoop. mgC L�1 0.1 1.0
KH,C Half-saturation: microzoop.!macrozoop. mgdw L�1 1.0 5.0
KD,C Half-saturation: detritus!macrozoop. mgC L�1 1.0 10.0
KH,I Half-saturation: microzoop.!macroinv. mgdw L�1 1.0 5.0
KD,I Half-saturation: detritus!macroinv. mgC L�1 1.0 10.0
KH,F Half-saturation: microzoop.!fish mgdw L�1 5.0 10.0
KC,F Half-saturation: macrozoop.! fish mgdw L�1 0.05 0.1
KI,F Half-saturation: macroinv.! fish mgdw m�2 50.0 200.0
yPE,A Phos. utilization: phyt. Production mgP mgC�1 0.03
yPH,M Phos. utilization: microbial production mgP mgC�1 0.05
"D,M Efficiency: detritus!microbes – 0.3 0.7
"A,H Efficiency: phyt.!microzoop. – 0.05 0.1
"M,H Efficiency: microbes!microzoop. – 0.2 0.5
"D,H Efficiency: detritus!microzoop. – 0.3 0.7
"A,C Efficiency: phyt.!macrozoop. – 0.2 0.5
"H,C Efficiency: microzoop.!macrozoop. – 0.2 0.5
"D,C Efficiency: detritus!macrozoop. – 0.05 0.1
"H,I Efficiency: microzoop.!macroinv. – 0.3 0.7
"D,I Efficiency: detritus!macroinv. – 0.2 0.5
"H,F Efficiency: microzoop.! fish – 0.05 0.1
"C,F Efficiency: macrozoop.!fish – 0.3 0.7
"I,F Efficiency: macroinv.! fish – 0.6 0.9
yTP:TSS TP:TSS ratio in tributary inflow [log10] – �3.0 �1.0
yZ Zooplankton carbon:biomass ratio mgC mgdw�1 0.2 0.7
yI Macroinvertebrate carbon:biomass ratio mgC mgdw�1 0.5
yF Fish carbon:biomass ratio mgC mgdw�1 0.45
lA Respiration rate: phytoplankton day�1 0.01 0.05
lM Mortality rate: microbes day�1 0.5 2.0
lZ Loss rate: zooplankton day�1 0.01 0.1
lI Loss rate: macroinvertebrates day�1 0.05 0.1
lF Loss rate: fish day�1 0.001 0.01

Note. anv, nominal value for input factors excluded from Monte Carlo sampling; [min, max], sampling domain.
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� [L–U]: mean Chlorophyll a concentration should be

between 5–16 mg L�1;

� [L–U]: mean larval-juvenile fish biomass should be

between 3–9 Kg ha�1;

Desired endpoint:

� [P]: epilimnion SRP concentration should not exceed

5 mg L�1;

� [U]: mean epilimnion SRP concentration should not

exceed 2 mg L�1;

� [P]: Chlorophyll a concentration should not exceed

3 mg L�1;

� [L–U]: mean Chlorophyll a concentration should be

between 0.4–1.9 mg L�1;

� [L–U]: mean larval-juvenile fish biomass should be

between 25–205 Kg ha�1.

For each endpoint, five RSA replicates are performed, based

on 5000 model simulations each. The Monte Carlo samples

are obtained from a joint uniform distribution of the input

factors defined over the range of values derived from an

extensive literature search (Tables 2–4; see also [30]). No

other information describing the parameter distributions is

available. Data recorded from previous field studies do not

include the food web components of the model adopted for

this study. Also, due to significant structural differences, it is

difficult to adopt parameter estimates from previous model

calibrations. The joint uniform distribution therefore pro-

vides a reasonable prior distribution for this analysis. This

choice indeed reflects the Bayesian approach to statistical

analysis [33], in selecting the least informative prior

distribution relative to what is expected from the intended

experiment. Figures 6 and 7 illustrate examples of the

Table 3. Input factors for the Lake Lanier ecological model.

Symbol Description Unit nv min max

Process parameters (. . . continued)
� I,emerg Insect emergence rate day�1 0.001 0.01
�F,age Fish ageing rate day�1 0.01 0.05
�G,feed Adult fish feeding rate day�1 0.002 0.005
�F,recruit Fish recruitment rate day�1 0.002 0.02
�dec,s Decomposition rate: in sediment day�1 0.001 0.01
�des Desorption rate: in sediment day�1 0.001 0.01
yP,dec Phos. yield from decomposition mgP mgC�1 0.02
yP,des Phos. yield from desorption mgP g�1 1.5
sA Settling velocity: phytoplankton m day�1 0.02 0.06
sD Settling velocity: detritus m day�1 0.1 0.3
sTSS Settling velocity: suspended solids m day�1 0.1 0.5
�growth Temperature coeff.: growth processes – 1.0 1.1
�loss Temperature coeff.: loss processes – 1.0 1.1
�w Light extinction: clear water m�1 0.17 0.35
aA Light extinction: phyt. Chlorophyll L (mgC m) �1 0.1 0.6
aTSS Light extinction: suspended solids L (mg m) �1 0.01 0.05
Lm Optimal light intensity: phyt. cal (m2 day)�1 325
vs Diffusion coeff.: sediment!water [log10] m2 day�1 �7.0 0.0
ds Effective depth of sediment layer m 0.01 0.1
	p Density of sediment solids g cm�3 2.5

s Porosity of sediment layer – 0.5 0.9
fDR Proportion of refractory detritus – 0.0 1.0
G Adult fish biomass: kg ha�1

Feared endpoint 18.0 66.0
Desired endpoint 184.0 1509.0

Initial states
PE(0) Initial condition: Epilimnion SRP mgP L�1 1.0 3.0
PH(0) Initial condition: Hypolimnion SRP mgP L�1 1.0 3.0
PS(0) Initial condition: Sediment Phosphorus mgP L�1 10.0 50.0
A(0) Initial condition: Phytoplankton mgC L�1 0.1 1.5
M(0) Initial condition: Microbes mgC L�1 0.1 1.0
H(0) Initial condition: Microzooplankton mg L�1 dw. 0.01 0.1
C(0) Initial condition: Macrozooplankton mg L�1 dw. 0.01 0.1
I(0) Initial condition: Macroinvertebrates mg m�2 dw. 20.0 60.0
F(0) Initial condition: Larval-Juvenile Fish kg ha�1 0.0
DL(0) Initial condition: Labile Detritus mgC L�1 0.1 0.5
DR(0) Initial condition: Refractory Detritus mgC L�1 0.5 1.5
DS(0) Initial condition: Sediment Detritus gC m�2 0.1 0.5
TSS(0) Initial condition: Suspended Solids mg L�1 1.0 5.0
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behavior-giving (B) simulations for the feared and desired

endpoints respectively, each summarized by envelope and

median plots of the model outputs.

3.3. RSA Rankings

Sensitivity classifications (CS) of input factors for the feared

and desired endpoints (see Tables 6 and 7) are based on the

following rule: Class 1 (critical) includes the input factors

with dm,n values corresponding to a significance level less

than 10%; Class 2 (important) contains those between 10%

and 20%, inclusive; and Class 3 (insignificant), those greater

than 20%. Ranks (r) are assigned to input factors in each

replicate, in decreasing order of their respective dm,n values.

Finally, the overall top 20 input factors are determined by

summing the ranks (�r) across all five RSA replicates. The

top 20 ranks are selected because, on the whole, they contain

at least 75% of the critical (Class 1) input factors. However,

not all of the overall top 20 input factors appear in the top 20

ranks in every RSA replicate. This suggests the possible

existence of correlations among the input factors, whereby

the prescribed behavior definitions are matched by several

different combinations of key input factors. The high

dimensionality of the model (i.e., with 94 uncertain input

Table 4. Input factors for the Lake Lanier ecological model.

Symbol Description Unit nv min max

External inputs and forcing functions
NQ Index of inflow and discharge time series – 1 35
NL Index of solar radiation time series – 1 4
Te,avg Mean daily water temperature: epilimnion 
C

Feared endpoint 21 27
Desired endpoint 16 22

Th,avg Mean daily water temperature: hypolimnion 
C 8 12
 L,avg Mean daily photoperiod – 0.5
Te,rng Range of water temperature: epilimnion 
C 19 21
Th,rng Range of water temperature: hypolimnion 
C 4 6
 L,rng Range of photoperiod – 0.2
Te,phs Time of mean water temperature: epilimnion Julian day 135 155
Th,phs Time of mean water temperature: hypolimnion Julian day 175 195
 L,phs Time of mean daily photoperiod Julian day 78
temerg,0 Onset of insect emergence Julian day 75 130
trecruit,0 Onset of fish spawning Julian day 105 165
temerg,d Duration of insect emergence day 100 200
trecruit,d Duration of fish spawning day 30 60
tno-age,d Duration of no fish ageing day 50 120
vt,mix Diffusion coeff. (thermocline) at full mixis m day�1 4 10
tstrat,0 Onset of stratification Julian day 90 105
tstrat,m Time of stable stratification Julian day 150 165
tmix,0 Onset of destratification Julian day 300 310
tmix,m Time of full mixis Julian day 345 355
fPE,ovfl Max. fraction of phosphorus load into epilimnion – 0.6 1.0
tovfl,0 Onset of transition: underflow! overflow Julian day 25 35
tovfl,m Time of stable overflow Julian day 85 95
fPE,undfl Min. fraction of phosphorus load into epilimnion – 0.2 0.5
tundfl,0 Onset of transition: overflow! underflow Julian day 180 210
tundfl,m Time of stable underflow Julian day 270 280

Table 5. Quantiles for the distribution of speculated changesa.

Water quality indicator Feared endpoint Desired endpoint

[quantiles, %] ! 10 25 50 75 90 10 25 50 75 90

Total nitrogen �3.7 2.4 3.7 4.6 6.4 �6.4 �4.2 �2.1 �1.5 1.0
Total phosphorus 3.7 4.6 4.6 6.4 8.2 �4.6 �4.2 �2.8 �2.1 �1.5
Water clarity �10.0 �6.4 �5.7 �3.3 �2.8 1.5 2.1 2.8 2.8 4.6
Chlorophyll a 2.8 4.2 5.5 8.2 8.2 �4.6 �3.9 �2.6 �1.7 1.0
Fish population �10.0 �8.7 �6.4 �4.6 �2.8 1.0 1.9 2.8 4.6 8.2
Avg. ann. water temperature 70 75 76 76 79 62 64 68 70 70

Note. aSpeculations for future water temperature are absolute values.
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factors) further increases the likelihood of correlations

among the input factors, which hinders the replicability of

results, and potentially undermines the robustness of the

results. In this analysis, the five replicates conducted for each

endpoint result in different rankings of the input factors.

However, a closer inspection of Tables 6 and 7 reveals some

consistencies. For example, the overall top four input factors

{yTP:TSS, �F, �F,recruit, lZ} for the feared endpoint, and the

overall top five {yTP:TSS, �F,recruit, vs, G, �F} for the desired

endpoint, all feature in the top 10 ranks for each RSA

replicate. Also, subsequent discussions will show how these

and other top tanked input factors collectively describe sim-

ilar ecological processes across the five replicates. Thus, in

spite of the different rankings, the same key macroscopic

attributes of the reservoir ecosystem are identified in the

RSA replicates.

While Monte Carlo methods, such as RSA, provide an

effective means for exploring the entire input factor domain,

thereby providing a global analysis of uncertainty for a given

problem situation, the sampling involved often raises

important issues of replicability and robustness. As dis-

cussed above, outcomes of replicate Monte Carlo experi-

ments can be similar yet different in many respects. This is

indeed valuable for both the scientist seeking a better

understanding of system behavior, and the stakeholder

pondering optional policies and actions for improving or

maintaining the performance of the system. Whereas the

similarities inform the selection of key attributes of the

system, the inconsistent outcomes identify different plau-

sible modes of behavior. The challenge to science is often in

predicting which of these candidate interpretations will,

individually or collectively, determine the eventual future

system behavior. In a stakeholder forum, the availability of

options widens the scope of deliberations, thus enhancing

the quality of decision-making and potentially minimizing

the risk of surprise events in the future.

Tables 6 and 7 also show the success rate (m=N) for each

RSA replicate, i.e., the proportion of the 5000 simulations

that match the behavior definitions. After 5000 model calls,

the UCPR sampling routine doubles the sample size of

behavior-giving input factors on average across the five

replicates for the feared endpoint. The success rates range

from 0.98% to 1.10% for the feared endpoint, and from

2.30% to 2.54% for the desired endpoint. This provides

merely a hint of the attainability of the speculated endpoints,

since success rates do not describe the distributional pro-

perties of the behavior-giving input factor values. In general,

it would seem that the feared endpoint is less plausible than

the desired endpoint, a preliminary inference that might be

sufficient to allay the fears of some stakeholders. The low

success rates (less than 3%) are a general indication of the

extremeness of the speculated endpoints. Perhaps more

fundamentally, they could also be attributed to structural

inadequacies in the model itself. A common issue with

ecological models is the resolution of the constituent state

variables and functions. In the model employed for this

study (see Fig. 5), spatial segregation is limited to

distinguishing the photic, aphotic, and sediment layers in

the vertical profile of the reservoir, and taxonomic resolution

includes only the macroscopic functional groups of biota and

nutrients. However, the process parameters in the same

model are often derived from single-species laboratory

experiments or microcosm field studies. Thus, the model

structure imparts a rather different meaning and scale to the

Fig. 6. Example of Monte Carlo simulation for the behavior-giving
(B) model outputs for the feared future endpoint, showing:
(i) median plots (thick lines); (ii) envelope plots (thin lines);
and (iii) the behavior definitions (dashed lines, with labels:
[P]eak value, [U]pper and [L]ower bounds; square bocks
indicate the period May–September, Julian day 121–273,
during which model ouputs are compared to the behavior
definitions).

Fig. 7. Example of Monte Carlo simulation for the behavior-giving
(B) model outputs for the desired future endpoint, (Legend
as in Fig. 6).
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process parameters from that of the informing empirical

data. For this reason therefore, it is not recommended that

the success rates be employed in quantitative assessments,

such as in probabilistic risk analysis.

Nevertheless, the resulting distribution of input factors

provides some useful insights into the differences in

ecological behavior between the stakeholder-derived end-

points. Table 8 lists the medians of the marginal distributions

of behavior-giving values for the top 10 input factors in

Tables 6 and 7. Five key input factors {�F, lZ, �F,recruit, vs,

yTP:TSS} are common to both endpoints. However, the

contrast in ranking and distribution for {yTP:TSS, vs, lZ} is

quite significant. First, {yTP:TSS}, the ratio of total phos-

phorus to total suspended solids concentration in the

tributary inflow, is ranked highest for both endpoints, thus

indicating the importance of uncertainties in estimating

nutrient loading from the adjoining watershed. However,

there is a significant difference in the distribution of this

factor, as its median value drops from about 0.8 for the

feared endpoint to just 0.4 for the desired endpoint. This

outcome agrees with the expectation that at the desired

endpoint, which requires less nutrients for reduced primary

production, Lake Lanier will receive less nutrient load from

its watershed. Second, {vs}, the diffusion coefficient

representing exchange of soluble phosphorus across the

sediment-water interface, is ranked significantly higher for

the desired endpoint (and also features in all its five RSA

replicates). Against the backdrop of low nutrient concentra-

tions at the desired endpoint, the typically low flux of

phosphorus from the sediment layer presumably becomes a

key contributor to SRP concentrations in the water column.

Third, {lZ}, the combined metabolic loss rate constant for

micro- and macro-zooplankton drops from fourth place for

the feared endpoint, to ninth for the desired endpoint,

suggesting that the zooplankton species may play signifi-

cantly different roles in the aquatic food web at both

endpoints, as discussed next.

Indeed, it appears the feared and desired endpoints

described by the stakeholders are dominated by two different

pathways for energy transfer within the aquatic food web.

The food web model integrates the conventional grazing

food chain, which includes phytoplankton and macrozoo-

plankton, with the microbial loop, featuring the relatively

small-sized microbes and microzooplankton (see Fig. 5). In

Table 8, the phytoplankton and macrozooplankton process

parameters {�A, �C, KA,C} appear in the top 10 ranks for the

Table 6. Summary of RSA classification for the feared endpointa.

Input factor Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5

dm,n r Cs dm,n r Cs dm,n r Cs dm,n r Cs dm,n r Cs �r

yTP:TSS 0.397 (1) 1 0.386 (1) 1 0.470 (1) 1 0.340 (2) 1 0.399 (1) 1 6
�F 0.338 (2) 1 0.202 (6) 1 0.350 (2) 1 0.256 (4) 1 0.282 (3) 1 17
�F,recruit 0.250 (4) 1 0.184 (7) 1 0.286 (3) 1 0.276 (3) 1 0.291 (2) 1 19
lZ 0.218 (7) 1 0.222 (5) 1 0.217 (5) 1 0.351 (1) 1 0.270 (4) 1 22
KA,C 0.163 (12) 2 0.139 (27) 3 0.284 (4) 1 0.242 (5) 1 0.215 (6) 1 54
�C 0.219 (6) 1 0.123 (31) 3 0.200 (7) 1 0.232 (6) 1 0.177 (11) 1 61
vt,mix 0.157 (13) 2 0.083 (64) 3 0.175 (9) 1 0.124 (26) 3 0.179 (9) 1 121
vs 0.098 (41) 3 0.279 (2) 1 0.154 (13) 2 0.131 (25) 3 0.097 (47) 3 128
lI 0.109 (32) 3 0.121 (34) 3 0.104 (41) 3 0.172 (11) 2 0.146 (17) 3 135
�A 0.151 (18) 2 0.146 (20) 3 0.125 (25) 3 0.092 (54) 3 0.129 (22) 3 139
"D,C 0.167 (11) 1 0.163 (14) 2 0.116 (33) 3 0.083 (61) 3 0.127 (25) 3 144
aA 0.229 (5) 1 0.109 (41) 3 0.120 (31) 3 0.057 (83) 3 0.238 (5) 1 165
G 0.129 (24) 3 0.171 (9) 1 0.139 (19) 3 0.086 (59) 3 0.086 (54) 3 165
"A,C 0.282 (3) 1 0.118 (35) 3 0.082 (62) 3 0.101 (46) 3 0.131 (21) 3 167
yZ 0.171 (10) 1 0.261 (4) 1 0.055 (86) 3 0.132 (23) 3 0.096 (51) 3 174
� I 0.132 (23) 3 0.145 (21) 3 0.082 (61) 3 0.107 (41) 3 0.118 (29) 3 175
tundfl,0 0.082 (55) 3 0.137 (28) 3 0.114 (34) 3 0.141 (20) 3 0.110 (38) 3 175
�loss 0.068 (79) 3 0.122 (33) 3 0.114 (35) 3 0.177 (9) 1 0.136 (20) 3 176
lA 0.156 (15) 2 0.123 (32) 3 0.079 (66) 3 0.096 (52) 3 0.157 (13) 2 178
TSS(0) 0.102 (35) 3 0.067 (79) 3 0.157 (11) 2 0.119 (31) 3 0.129 (23) 3 179

Pre-UCPR
m 21 25 19 22 23
m=N 0.42% 0.50% 0.38% 0.42% 0.46%

Post-UCPR
m 55 52 51 50 49
m=N 1.10% 1.04% 1.02% 1.00% 0.98%

Note. adm,n, Kolmogorov-Smirnov test statistic; Cs, sensitivity class; r, rank; m, number of behavior-giving simulations; N, total number of
simulations (5000); m=N, success rate.
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feared endpoint. However, they are replaced by the

microbial loop process parameters {�M, �H, lM} at the

desired endpoint. The reason for this switch in dominance

between the conventional grazing food chain and the

microbial loop is not quite clear, but empirical evidence

suggest that it exists [34]. Indeed, the role of the microbial

loop in pelagic ecosystems is still a key issue of research

interest in aquatic ecology [35–38].

3.4. TSDE Trees

The tree diagram in Figure 1 (the result of Rep. #3 for the

feared endpoint) is an example of the ten obtained from this

analysis. Table 9 presents the same tree as records of the

terminal nodes, ranked in order of decreasing relative

density, and a trace (from the root node) of the sequence

of input factors that define each terminal node. The high-

Table 7. Summary of RSA classification for the desired endpointa.

Input factor Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5

dm,n r Cs dm,n r Cs dm,n r Cs dm,n r Cs dm,n r Cs �r

yTP:TSS 0.230 (2) 1 0.275 (1) 1 0.224 (2) 1 0.271 (1) 1 0.245 (1) 1 7
�F,recruit 0.263 (1) 1 0.250 (2) 1 0.198 (6) 1 0.168 (4) 1 0.205 (2) 1 15
vs 0.158 (6) 1 0.160 (6) 1 0.198 (4) 1 0.207 (2) 1 0.174 (6) 1 24
G 0.171 (3) 1 0.234 (3) 1 0.200 (3) 1 0.130 (10) 1 0.178 (5) 1 24
�F 0.141 (9) 1 0.119 (10) 1 0.284 (1) 1 0.198 (3) 1 0.165 (7) 1 30
�H 0.160 (5) 1 0.168 (4) 1 0.108 (16) 2 0.141 (8) 1 0.183 (4) 1 37
�M 0.161 (4) 1 0.111 (14) 1 0.198 (5) 1 0.149 (6) 1 0.111 (20) 2 49
lM 0.102 (23) 2 0.127 (9) 1 0.141 (11) 1 0.149 (5) 1 0.142 (11) 1 59
lZ 0.128 (10) 1 0.164 (5) 1 0.175 (7) 1 0.096 (23) 3 0.071 (38) 3 83
�growth 0.107 (19) 2 0.062 (53) 3 0.122 (14) 1 0.125 (13) 1 0.151 (8) 1 107
Te,avg 0.099 (24) 2 0.099 (19) 2 0.078 (32) 3 0.113 (14) 2 0.116 (19) 1 108
trecruit,d 0.082 (32) 3 0.119 (11) 1 0.089 (23) 3 0.069 (39) 3 0.191 (3) 1 108
�C 0.122 (15) 1 0.049 (67) 3 0.147 (9) 1 0.130 (12) 1 0.107 (23) 2 126
tno-age,d 0.063 (48) 3 0.086 (25) 3 0.097 (20) 3 0.096 (24) 3 0.142 (10) 1 127
�F,age 0.103 (22) 2 0.156 (7) 1 0.083 (26) 3 0.068 (45) 3 0.089 (28) 3 128
Th,avg 0.080 (36) 3 0.107 (17) 2 0.090 (22) 3 0.061 (51) 3 0.085 (30) 3 156
tstrat,m 0.074 (39) 3 0.099 (21) 2 0.130 (13) 1 0.057 (58) 3 0.094 (25) 3 156
"H,I 0.068 (43) 3 0.057 (58) 3 0.149 (8) 1 0.082 (34) 3 0.080 (32) 3 175
NQ 0.158 (7) 1 0.074 (38) 3 0.056 (57) 3 0.085 (31) 3 0.062 (45) 3 178
�des 0.044 (73) 3 0.082 (27) 3 0.098 (19) 3 0.082 (33) 3 0.076 (37) 3 189

m 127 125 121 118 115
m=N 2.54% 2.50% 2.42% 2.36% 2.30%

Note. adm,n, Kolmogorov-Smirnov test statistic; Cs, sensitivity class; r, rank; m, number of behavior-giving simulations; N, total number of
simulations (5000); m=N, success rate.

Table 8. Median values of the marginal distribution of key input factorsa,b.

Feared endpoint Desired endpoint

Key input factors Replicates Key input factors Replicates

1 2 3 4 5 1 2 3 4 5

yTP:TSS 0.8 0.8 0.8 0.7 0.8 yTP:TSS 0.4 0.4 0.4 0.4 0.4
�F 0.3 0.3 0.3 0.2 0.2 �F,recruit 0.4 0.4 0.4 0.4 0.4
�F,recruit 0.4 0.4 0.4 0.4 0.4 vs 0.6 0.6 0.6 0.7 0.6
lZ 0.7 0.7 0.8 0.7 0.7 G 0.4 0.4 0.3 0.4 0.4
KA,C -.- -.- 0.7 0.7 0.6 �F 0.4 0.4 0.3 0.3 0.4
�C 0.3 -.- 0.4 0.3 -.- �H 0.4 0.4 -.- 0.4 0.3
vt,mix -.- -.- 0.4 -.- 0.3 �M 0.7 -.- 0.6 0.7 -.-
vs -.- 0.7 -.- -.- -.- lM -.- 0.4 -.- 0.4 -.-
lI -.- -.- -.- -.- -.- lZ 0.6 0.6 0.7 -.- -.-
�A -.- -.- -.- -.- -.- �growth -.- -.- -.- -.- 0.7

Note. aMedian values are rescaled on the interval [0,1].
bBlank cell (-.-) indicates that the input factor is not ranked in the top 10 for the RSA replicate.
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density terminal nodes (HDTNs) are determined by a ‘‘50%

rule’’, which selects terminal nodes from the top of the

ordered list until the cumulative sum of points just exceeds

half the initial number of points. In other words, the HTDNs

collectively contain at least half the number of behavior-

giving (B) input factor sets. This rather arbitrary rule for

distinguishing high- and low-density terminal nodes is

applied consistently as a basis for comparing the TSDE

Table 9. Terminal nodes (TN) of the TSDE tree: feared endpoint: Rep. 3a.

TN Relative density #points in node Volume [%] Tree level [1¼ root]:

1 2 3 4 5 6 7 8

S23 181.554 4 0.04 yTP:TSS sF KA,C sA hloss sF,recruit sF,recruit sI

S25 122.549 5 0.08 yTP:TSS sF KA,C sA lZ

S22 25.216 5 0.39 yTP:TSS sF KA,C sA hloss sF,recruit sF,recruit sI

S24 10.893 4 0.72 yTP:TSS sF KA,C sA lZ

S13 6.127 5 1.60 yTP:TSS sF KA,C trecruit,0

S20 5.674 5 1.73 yTP:TSS sF KA,C sA hloss sF,recruit sF,recruit

S6 4.085 5 2.40 yTP:TSS lZ trecruit,0

S27 4.085 5 2.40 yTP:TSS �F vs

S19 2.723 3 2.16 yTP:TSS �F KA,C �A �loss �F,recruit

S16 0.681 1 2.88 yTP:TSS �F KA,C �A �loss

S12 0.613 2 6.40 yTP:TSS �F KA,C trecruit,0

S26 0.272 3 21.60 yTP:TSS �F vs

S7 0.204 1 9.60 yTP:TSS lZ trecruit,0

S4 0.123 3 48.00 yTP:TSS lZ

Total 51 100.00
High-density 28 4.56 (up to and including TN S20)

Note. aHigh-density terminal nodes (HDTN) are in bold.

Table 10. Summary of RSA and TSDE resultsa.

Feared endpoint Desired endpoint

Input factor #HDTNs defined by input factor
replicates

Input factor #HDTNs defined by input factor
replicates

1 2 3 4 5 1 2 3 4 5

Primaryb Primaryb

yTP:TSS 1 7 6 9 9 yTP:TSS 8 8 8 9 9
�F 8 – 6 3 7 �F,recruit 8 8 – – 9
�F,recruit 7 – 3 9 1 vs 8 6 8 8 9
lZ 5 – 2 9 2 G – 2 1 3 7
KA,C – 1 6 – 2 �F – – 9 – –
�C – – – 3 1 �H 2 – – – 5
vt,mix – – – – – �M 3 – 7 – –
vs – 6 – 4 – lM 3 – – 6 –
lI – – – – – lZ – – – – –
�A – – 5 – – �growth – – – – 2

Secondaryc Secondaryc

aA 6 – – – – fPE,undfl 6 – – – –
yZ – 4 – – – tundfl,0 – 2 – – –
sTSS – 2 – – – tovfl,0 – – 7 – –
�loss – – 3 – – �C – – – 6 –
�w – – – 7 – �G,feed – – – – 9
"M,H – – – – 5
KA,H – – – – 2

#HDTN in tree 8 7 6 9 9 #HDTN in tree 8 8 9 9 9
% vol. HDTN 3.15 3.26 4.56 3.23 2.70 % vol. HDTN 9.65 11.75 10.12 13.83 8.10

Note. aBlank cell (–) indicates that the input factor does not feature in the TSDE tree.
bTop 10 input factors derived from the RSA rankings (Tables 6 and 7).
cInput factors correlated with the top 10 factors in the TSDE trees.

AN INVERSE APPROACH TO THE ANALYSIS OF UNCERTAINTY 279



replicates. Its simplicity seems rather appropriate for this

preliminary computational assessment, as it provides an

effective tool for communicating the outcomes to stake-

holders. Results of the TSDE replicates are summarized in

Table 10 simply as the number of HTDNs defined by the

input factors.

The key summary statistic for this analysis is the total

percentage volume of the high-density terminal nodes, which

ranges from 2.70% to 4.56% for the feared endpoint, and

from 8.10% to 13.83% for the desired endpoint. Since the

percentage volume of the HDTNs indicate the proportion of

the densely populated regions of the input factor sampling

domain, it provides a stronger indication of the likelihood of

reaching the speculated endpoints than does the success rate

calculated in the previous RSA procedure. Thus, beyond

concurrence with the RSA results, i.e., that the feared

endpoint seems less plausible than the desired endpoint, the

stakeholders can also be informed that their desires for the

future condition of Lake Lanier are about three times as

probable as their fears. Indeed, the partitions represented by

the terminal nodes of the TSDE tree provide a useful

qualitative description of the distribution of behavior-giving

input factors. However, it is important to note that this form

of integrated assessment is founded inter alia on a fixed

model structure, a preset sampling domain, and prescribed

behavior definitions, that are often hard to justify objectively.

Thus, these underlying assumptions must always be care-

fully considered when employing TSDE results as prob-

abilities for quantitative risk analyses.

Table 10 shows that some of the top 10 input factors in the

RSA rankings (see Tables 6 and 7), in particular, the set {�F,

lZ, �F,recruit, vs, yTP:TSS}, also define high-density terminal

nodes in the TSDE trees. Thus, these primary factors play a

key role in determining the ecological behavior of Lake

Lanier, both individually, as indicated by their RSA

rankings, and collectively, as depicted by their positions in

the TSDE trees. As discussed in Section 2.2, the sequence of

input factors that define each high-density terminal node of

the TSDE tree diagram represents a set of input factors that

collectively interact to match the specified behavior defini-

tion. In addition, other input factors enter into the

interactions at relatively high positions in the tree. These

secondary factors include {aA, yZ, sTSS, �loss, �w, "M,H, KA,H}

for the feared endpoint, and {fPE,undfl, tundfl,0, tovfl,0, �C,

�G,feed} for the desired endpoint. The composition of

secondary factors also indicates behavioral differences

between the speculated endpoints. For the feared endpoint,

the secondary factors describe internal ecosystem processes

only. The extinction coefficients {�w, aA}, and settling

velocity of suspended solids {sTSS}, determine the degree of

light penetration for phytoplankton production, while {KA,H,

"M,H, yZ, �loss} characterize secondary production (i.e., of

zooplankton and macroinvertebrates). On the other hand, the

majority of secondary factors for the desired endpoint

describe external stressors on Lake Lanier, with {�C}, the

growth rate-constant for macrozooplankton, being the only

internal process parameter. The parameters {tovfl,0, tundfl,0}

characterize the timing of density currents associated with

tributary inflows to the reservoir, {fPE,undfl} controls nutrient

load distribution between the epilimnion and hypolimnion in

response to the tributary density currents, and {�G,feed} is the

rate of predation by adult fish, which are conceptually

exogenous to the modeled food web. Collectively, the

primary and secondary input factors identify several key

attributes of Lake Lanier’s ecosystem, many of which are not

yet well understood. In particular, sediment-nutrient interac-

tions, microbial and zooplankton production, and the impacts

of fisheries management should be issues for future scientific

investigations on Lake Lanier [30]. The outcomes of such

inquiry would not only contribute significantly to improved

knowledge, but also enhance stakeholder perceptions of the

ecological behavior of Lake Lanier.

3.5. Synthesis

RSA ranks the importance of each input factor in matching

the stakeholder-derived behavior definitions, while TSDE

complements this by identifying key interactions among the

input factors. Table 10 represents an integration of the RSA

and TSDE results for the feared and desired endpoints,

which informs the ranking of corresponding ecosystem

attributes (Table 11). These rankings are based solely on the

RSA ranking of input factors and the number of high-density

terminal nodes defined by the input factors in the TSDE

trees. For the feared endpoint the key reservoir attributes

(and corresponding input factors) are: (i) nutrient loading

{yTP:TSS}; (ii) fish production {�F, �F,recruit}; (iii) zooplank-

ton production {�C, KA,H, lZ}; and (iv) sediment-water-

nutrient interactions {vs}. For the desired endpoint, they are:

(i) nutrient loading {yTP:TSS}; (ii) sediment-water-nutrient

interactions {vs}; (iii) fish production {�F, �F,recruit, G}; and

(iv) microbial production {�M, �H, lM}. Such ranking of

ecosystem attributes is potentially useful to resource

managers in setting priorities for policy actions, and to

scientists for directing the focus of future research efforts

toward resolving issues of practical relevance to the stake-

holders. Also, despite gross uncertainties in the behavior

definitions and input factors, it is quite encouraging that the

RIMME methodology is able to identify attributes of Lake

Lanier’s ecosystem behavior that uniquely distinguish the

speculated extreme endpoints.

Table 11. Ranking of key ecosystem attributes for Lake Lanier.

Rank Feared endpoint Desired endpoint

(1) Phosphorus loading Phosphorus loading
(2) Fish production Sediment-water interactions
(3) Zooplankton production Fish production
(4) Sediment-water interactions Microbial production
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4. CONCLUSIONS

Within the context of adaptive community learning, as

proposed by Beck et al. [2], and demonstrated here in a

case study of generating environmental foresight for Lake

Lanier, uncertainty is most pervasive. It arises inter alia

from: (i) incomplete scientific knowledge of the system of

interest; (ii) inadequate simulation models; and (iii) poor

anticipation of future events. Uncertainty has thus become

the bane of model-based environmental planning and

decision-making. Recently, this situation has been intensified

in an emerging era of post-normal science, characterized by

high decision stakes and system uncertainties, that now

demands the active integration of various diverse sources of

knowledge and experience [15, 39].

This study has demonstrated the utility of an inverse

approach to the computational analysis of uncertainty in

environmental simulation models. In conjunction with the

scientific uncertainties associated with simulation modeling,

value judgment was considered in a semi-qualitative fashion,

it having the flexibility of being derived from a combination of

empirical data, casual observations, experiences, perceptions,

and imaginations of experts and lay persons. Whereas the

component procedures of the RIMME methodology are

similar to contemporary Monte Carlo methods, the focus of

their application in this study was reversed from that of pre-

dicting the future to backcasting from the speculated future.

Indeed, the concept of backcasting has been associated

with modeling in various other fields. After reviewing the

philosophical, political, institutional, and methodological

problems of long-term socioeconomic and resource policy

modeling and forecasting, Robinson [40] stresses the need for

backcasting techniques that reveal the possibility, and test the

feasibility and impacts, of alternative future endpoints. Also,

backcasting has been proposed in the global change sciences,

as a means of reconstructing alternative past scenarios, in

order to improve the anticipation of future surprise events [41].

Although the Lake Lanier case study can be considered

small-scale, relative to global climate change, for example,

the dimensionality of the problem (evidenced by the 94 input

factors analyzed) no doubt presented a formidable challenge.

This notwithstanding, the inverse approach adopted in this

study has proven to be potentially beneficial to all parties

involved in a participatory environmental futures assess-

ment. In particular, the results obtained have provided

information by which: (i) stakeholders’ fears and hopes for

the future can be corroborated or refuted; (ii) regulatory

measures can be evaluated; (iii) control actions can be

prioritized; (iv) the direction for future scientific research on

the environment can be focused on stakeholder- and policy-

relevant issues; and (v) society can be enlightened and

educated about the environment in a continuous adaptive

manner. Thus, the computational analysis of uncertainty has

provided a middle ground for integrating stakeholder

imagination with scientific theory.
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