Developing a CRISPR-based Prime Editing Workflow for Human Induced Pluripotent Stem Cells to Model Cardiac Arrhythmogenic TNNT2 Variants

Bal Ruprai^{1,2}, Tiffany Barszczewski^{1,2}, Mariam Butt^{1,2}, Aasim Khan^{1,2}, Shreya Luthra^{1,2}, Glen Tibbits^{1,2,3}

- (1) Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada;
- (2) BC Children's Hospital Research Institute, Vancouver, BC, Canada;
- (3) Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada

Background

Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiovascular disease.

- Affect 1:500 individuals and the primary cause of sudden cardiac arrest (SCA) in youth and young adults, including elite athletes.
- Interestingly, some patient specific **TNNT2** variants related HCM develop varying degrees of HCM yet demonstrate a disproportionally high incidence of SCA.

CRISPR-based prime editing builds on established genome editing protocols with the benefits of using a nicking Cas9 endonuclease circumventing the array of issues arising from the double-strand breaks (DSBs) of traditional CRISPR/Cas9 systems.

3 components of PE3b system:

- 1. Cas9 endonuclease (H840A Cas9n) fused to a Moloney murine leukemia modified reverse transcriptase (M-MLV-RT)
- 2. Prime editing guide RNA (pegRNA)
- 3. Nicking guide RNA (ngRNA)

Research Objective

Develop a robust prime editing protocol in hiPSCs to study pro-arrythmogenic gene variants in differentiated hiPSC-CMs

A high-fidelity and efficient work-

flow for developing variant hiPSC-

CMs using PE3b-based Prime

Differentiated hiPSC-CMs

Methods

hiPSC Prime Editing workflow. AICS-0075 cl.85 hiPSCs from the Allen Institute for Cell Sciences nucleofected with PE vectors/PEA1 vector. Cells sorted for GFP+ & pmCherry/GFP+ using FACS. Individual colonies manually picked to genotype variant lines.

Amplification-Refractory Mutation System (ARMS-PCR). Variant and wildtype specific primers designed for I79N^{+/-}, and R92Q+/-, detection. Primer optimization for WT detection.

Results 12 hrs 36 hrs **Cell Imaging:** GFP+/pmCherry+ (mC) hiPSCs imaged using Leica SP8 Confocal microscope

Fluorescence Activated Cell Sorting (FACS): Successfully nucleofected pmCherry+ and GFP+ (DP+) PE vector in AICS-0075 cr.85 hiPSCs (right plot). PEA1 vector failed to express adequately following nucleofection for viable FACS

Fluorescence

increased across

36hr monitoring

cell death

period

ARMS-PCR: Primer annealing optimized for R92 and I79 WT gene locus. 2-step annealing required for R92 designed

Summary

- Preliminary work established effective PE vectors & PEA1 nucleofection-based transfection and FACS based cell sorting for identifying and individualizing potentially edited hiPSCs
 - Waning expression and lack of effective PE expression due to rapid promoter silencing remain obstacles
 - ARMS-PCR optimized for WT hiPSCs at I79 and R92 TNNT2 gene locus
 - High degree of variant specific primer optimization trial questions usability in research-based applications

Bal Ruprai, bruprai@sfu.ca

