Prevalence and characteristics of

compensatory stepping responses

 during real-life falls in older adults PRESENTERBianca N Te, Vicki Komisar, Helen Chong, Stephen N Robinovitch
$\frac{\text { bnte@sfuca }}{\text { Department of }}$
BACKGROUND
In laboratory studies, older adults commonly rely on stepping to prevent falling when their balance is perturbed (Jensen et al., 2001). We extended the literature by characterizing the stepping responses of older adults during real-life falls, captured on video in long-term care (LTC).

METHODS

We analyzed videos of 1516 falls by 515 LTC residents. We used Generalized Estimated Equations to test whether step characteristics (prevalence, direction, and length) associated with initial fall direction, activity at the time of the fall, held weight-bearing objects, attempts to recover balance by grasping, sex, and age.

RESULTS

Attempts to recover balance by stepping were observed in 76% of falls. For these cases, 64% involved small steps (less than one-half foot length), 80% involved multiple steps, and 81% involved steps that aligned with the initial fall direction. Forward falls elicited larger steps that were more aligned with the fall direction. The oldest residents took smaller steps, but their steps were more aligned with the fall direction. Falling while walking (versus standing) led to more frequent steps. Holding a weight-bearing object led to smaller and less frequent steps. Attempts to recover balance by reaching to grasp a nearby object elicited steps that were more often misaligned with the fall direction.

DISCUSSION

Most falls by older adults in LTC were accompanied by attempts to recover balance by stepping. Further research is required on strategies to enhance compensatory stepping through exercise or perturbation training (Mansfield et al., 2010).

Older adults in long-term care

responded to falls with attempts to

recover balance by stepping. Most

falls elicited multiple, small steps

that aligned with the fall direction.

Mraxay

Figure 1. Screen captures of falls in the forward (A), backward (B), and sideways (C) directions

Table 1. Effect of fall and resident characteristics
on stepping responses ($\mathrm{n}=1516$ falls)

Table 2. Effect of fall and resident characteristics on step direction ($\mathrm{n}=1156$ falls)

Table 3. Effect of fall and resident characteristics on step length ($\mathrm{n}=1156$ falls)

