Strength in numbers? Do **European fire ants communicate** & forage better in groups?

Kenza Zobaidi, Jonathan Petrov, Saif Nayani, Jaime M. Chalissery, Regine Gries, Gerhard Gries PRESENTER: Kenza Zobaidi Faculty of Health Science

BACKGROUND:

- Ants communicate and forage by using smells that can be attractive or induce certain behaviors amongst the colony
- European fire ants (*Myrmica rubra*) are a significant invasive species in North America and disrupt native species and recreational areas
- By testing how European fire ants respond to these smells, we can gain a better understanding of their foraging behaviours

METHODS

- Testing was conducted during summer 2020 (n=10) and summer 2021 (n=10)
- Individual ants and groups of 10-20 ants were collected from the same colony and tested in parallel
- Ran 3 treatments with Y-tube choice olfactory bioassays, shown in figure 1
 - **1.** Alarm pheromone (3-octanol 3-octanone) (Cammearts-Tricot, M.C. 1973)
 - **2.** Trail pheromone (3-ethyl-2,5dimethylpyrazine) (Evershed R.P. et al. 1982)
 - **3.** Food bait (apples & cockroaches)
- The proportion of ants responding to the treatment was recorded
- The number of non-responders (N.R) was recorded

the European fire ant, appear to communicate

and forage better in

groups rather than

individually

Co	ntrol		
2020 Individual			
2020 Group			
2021 Individual			
2021 Group			
	1.0	0.75	0.50

Figure 3: Trail pheromone replicates

Figure 1 – modified Asim Renyard Diagram

Myrmica rubra, also called

Figure 2: Alarm pheromone replicates

	 RESULTS While not statistically significant, responses to the alarm pheromone showed that EFA may tend to respond better in groups (Figure 2: Alarm pheromone replicates) EFA group replicates showed a higher response rate for their trail pheromone (Figure 3: Trail pheromone replicates) EFA group replicates showed a strong attraction to the food bait (Figure 4: Food bait replicates) The results from the three treatments showed an overall trend that European fire ants tend to respond better in groups
3-octanone + 3-octanol	 DISCUSSION A better understanding of European fire ant foraging and communication behaviors can provide insight into development of pest management strategies Pheromones and food cues can be used as attractants for the development of
0.50 0.75 1.0 ding	 earth-friendly bait to target the invasive European fire ants The EFA did show an overall lower response rate during Summer 2021 compared to Summer 2020 The heatwaves that occurred over summer 2021 could be a possible explanation for the inconsistences in data, as the high temperature could

REFERENCES

Cammearts-Tricot, M. C. (1973). Phéromones Argégeant les Ouvrières de Myrmica Rubra. J. Insect Physiol. 19(6),1299-1315.

European fire ants

have affected the foraging behavior of

https://doi.org/10.1016/0022-1910(73)90213-8 Evershed R.P. et al. (1982). 3-ethyl-2,5-

dimethylpyrazine, the trail pheromone from the venom gland of eight species of Myrmica ants. *ScienceDirect,* 12(4), 383-391. https://doi.org/10.1016/0020-1790(82)90035-X

L Kenza Zobaidi, kzobaidi@sfu.ca

misodmys **Ú**JJE9S91 undergraduate research

SIMON FRASER UNIVERSITY